Arrangement Order Effects of Neuromuscular Training on the Physical Fitness of Youth Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measurement of Physical Fitness
2.4. Exercise Program
2.5. Statistical Analysis
3. Results
3.1. Changes in Counter-Movement Jump (CMJ) Ability
3.2. Changes in 10 and 20 m Sprint Ability
3.3. Changes in T-Agility Test and Illinois Change of Direction Test (ICDT)
3.4. Changes in Y-Balance Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dragijsky, M.; Maly, T.; Zahalka, F.; Kunzmann, E.; Hank, M. Seasonal variation of agility, speed and endurance performance in young elite soccer players. Sports 2017, 5, 12. [Google Scholar] [CrossRef]
- Tomáš, M.; František, Z.; Lucia, M.; Jaroslav, T. Profile, correlation and structure of speed in youth elite soccer players. J. Hum. Kinet. 2014, 40, 149. [Google Scholar] [CrossRef] [PubMed]
- McBurnie, A.J.; Dos’ Santos, T.; Johnson, D.; Leng, E. Training management of the elite adolescent soccer player throughout maturation. Sports 2021, 9, 170. [Google Scholar] [CrossRef]
- Penhune, V.B. Sensitive periods in human development: Evidence from musical training. Cortex 2011, 47, 1126–1137. [Google Scholar] [CrossRef]
- Solum, M.; Lorås, H.; Pedersen, A.V. A golden age for motor skill learning? Learning of an unfamiliar motor task in 10-year-olds, young adults, and adults, when starting from similar baselines. Front. Psychol. 2020, 11, 538. [Google Scholar] [CrossRef]
- Le Gall, F.; Carling, C.; Williams, M.; Reilly, T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer playersfrom an elite youth academy. J. Sci. Med. Sport. 2010, 13, 90–95. [Google Scholar] [CrossRef]
- An, K.O.; Lee, K.J. Sports injury prevention and functional training: A literature review. Asian J. Kinesiol. 2021, 23, 46–52. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Ford, K.R.; Best, T.M.; Bergeron, M.F.; Hewett, T.E. When to initiate integrative neuromuscular training to reduce sports-related injuries in youth? Curr. Sports Med. Rep. 2011, 10, 155. [Google Scholar] [CrossRef]
- Panagoulis, C.; Chatzinikolaou, A.; Avloniti, A.; Leontsini, D.; Deli, C.K.; Draganidis, D.; Fatouros, I.G. In-season integrative neuromuscular strength training improves performance of early-adolescent soccer athletes. J. Strength Cond. Res. 2020, 34, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Menezes, G.B.; Alexandre, D.R.; Pinto, J.C.L.; Assis, T.V.; Faigenbaum, A.D.; Mortatti, A.L. Effects of integrative neuromuscular training on motor performance in prepubertal soccer players. J. Strength Cond. Res. 2022, 36, 1667–1674. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, J.; Granacher, U.; Sanz-Rivas, D.; Marín, J.M.S.; Hernandez-Davo, J.L.; Moya, M. Sequencing effects of neuromuscular training on physical fitness in youth elite tennis players. J. Strength Cond. Res. 2018, 32, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Fusco, A.; Sustercich, W.; Edgerton, K.; Cortis, C.; Jaime, S.J.; Mikat, R.P.; Foster, C. Effect of progressive fatigue on session RPE. J. Funct. Morphol. Kinesiol. 2020, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Ferley, D.D.; Scholten, S.; Vukovich, M.D. Combined sprint interval, plyometric, and strength training in adolescent soccer players: Effects on measures of speed, strength, power, change of direction, and anaerobic capacity. J. Strength Cond. Res. 2020, 34, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Mathisen, G.; Pettersen, S.A. Anthropometric factors related to sprint and agility performance in young male soccer players. Open Access J. Sports Med. 2015, 6, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Sassi, R.H.; Dardouri, W.; Yahmed, M.H.; Gmada, N.; Mahfoudhi, M.E.; Gharbi, Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J. Strength Cond. Res. 2009, 23, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Fiorilli, G.; Iuliano, E.; Mitrotasios, M.; Pistone, E.M.; Aquino, G.; Calcagno, G.; di Cagno, A. Are change of direction speed and reactive agility useful for determining the optimal field position for young soccer players? J. Sports Sci. Med. 2017, 16, 247. [Google Scholar] [PubMed]
- Śliwowski, R.; Marynowicz, J.; Jadczak, Ł.; Grygorowicz, M.; Kalinowski, P.; Paillard, T. The relationships between knee extensors/flexors strength and balance control in elite male soccer players. PeerJ 2021, 9, e12461. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Lloyd, R.S.; Kushner, A.; Myer, G.D. Integrative neuromuscular training in youth athletes. Part II: Strategies to prevent injuries and improve performance. Strength Cond. J. 2016, 38, 9–27. [Google Scholar] [CrossRef]
- Lesinski, M.; Muehlbauer, T.; Granacher, U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci. Med. Rehabil. 2016, 2016 8, 35. [Google Scholar] [CrossRef]
- Bennett, N.; Woodcock, S.; Pluss, M.A.; Bennett, K.J.; Deprez, D.; Vaeyens, R.; Fransen, J. Forecasting the development of explosive leg power in youth soccer players. Sci. Med. Footb. 2019, 3, 131–137. [Google Scholar] [CrossRef]
- Nikolaidis, P.T. Age-related differences in countermovement vertical jump in soccer players 8–31 years old: The role of fat-free mass. Am. J. Sports Med. 2014, 2, 60–64. [Google Scholar] [CrossRef]
- Ferrete, C.; Requena, B.; Suarez-Arrones, L.; de Villarreal, E.S. Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. J. Strength Cond. Res. 2014, 28, 413–422. [Google Scholar] [CrossRef]
- Hoshikawa, Y.; Iida, T.; Muramatsu, M.; Ii, N.; Nakajima, Y.; Chumank, K.; Kanehisa, H. Effects of stabilization training on trunk muscularity and physical performances in youth soccer players. J. Strength Cond. Res. 2013, 27, 3142–3149. [Google Scholar] [CrossRef]
- Ribeiro, J.; Teixeira, L.; Lemos, R.; Teixeira, A.S.; Moreira, V.; Silva, P.; Nakamura, F.Y. Effects of plyometric versus optimum power load training on components of physical fitness in young male soccer players. Int. J. Sports Physiol. Perform. 2020, 15, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Benis, R.; Bonato, M.; Torre, A.L. Elite female basketball players’ body-weight neuromuscular training and performance on the Y-balance test. J. Athl. Train. 2016, 51, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, R.; Shen, J.; Zhou, A. Effects of school-based neuromuscular training on fundamental movement skills and physical fitness in children: A systematic review. PeerJ 2022, 10, e13726. [Google Scholar] [CrossRef] [PubMed]
- Lovell, R.; Knox, M.; Weston, M.; Siegler, J.C.; Brennan, S.; Marshall, P.W. Hamstring injury prevention in soccer: Before or after training? Scand. J. Med. Sci. Sports 2018, 28, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Loturco, I.; Sanchez-Sanchez, J.; Izquierdo, M.; Granacher, U. Sequencing effects of plyometric training applied before or after regular soccer training on measures of physical fitness in young players. J. Strength Cond. Res. 2020, 34, 1959–1966. [Google Scholar] [CrossRef]
- Arede, J.; Fernandes, J.; Moran, J.; Leite, N.; Romero-Rodriguez, D.; Madruga-Parera, M. Effects of an integrative neuromuscular training protocol vs. FIFA 11+ on sprint, change of direction performance and inter-limb asymmetries in young soccer players. Int. J. Sports Sci. Coach. 2022, 17, 54–62. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Soomro, N.; Pappas, E.; Sinclair, P.J.; Sanders, R.H. Adding a post-training FIFA 11+ exercise program to the pre-training FIFA 11+ injury prevention program reduces injury rates among male amateur soccer players: A cluster-randomised trial. J. Physiother. 2017, 63, 235–242. [Google Scholar] [CrossRef]
- Gee, T.I.; Morrow, R.A.; Stone, M.R.; Bishop, D.C. A neuromuscular training program enhances dynamic neuromuscular control and physical performance in court-sport athletes. Transl. Sports Med. 2020, 3, 9–15. [Google Scholar] [CrossRef]
- Wang, Z.H.; Pan, R.C.; Huang, M.R.; Wang, D. Effects of integrative neuromuscular training combined with regular tennis training program on sprint and change of direction of children. Front. Physiol. 2022, 13, 148. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Schwiertz, G.; Brueckner, D.; Kiss, R.; Panzer, S. Limb Differences in Unipedal Balance Performance in Young Male Soccer Players with Different Ages. Sports 2019, 7, 20. [Google Scholar] [CrossRef]
- Bigoni, M.; Turati, M.; Gandolla, M.; Augusti, C.A.; Pedrocchi, A.; La Torre, A.; Gaddi, D. Balance in young male soccer players: Dominant versus non-dominant leg. Sport. Sci. Health 2017, 13, 253–258. [Google Scholar] [CrossRef]
- Xiong, J.; Li, S.; Cao, A.; Qian, L.; Peng, B.; Xiao, D. Effects of integrative neuromuscular training intervention on physical performance in elite female table tennis players: A randomized controlled trial. PLoS ONE 2022, 17, e0262775. [Google Scholar] [CrossRef]
- Filipa, A.; Byrnes, R.; Paterno, M.V.; Myer, G.D.; Hewett, T.E. Neuromuscular training improves performance on the star excursion balance test in young female athletes. J. Orthop. Sports Phys. Ther. 2010, 40, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Gioftsidou, A.; Malliou, P.; Pafis, G.; Beneka, A.; Godolias, G. Effects of a soccer training session fatigue on balance ability. J. Hum. Sport Exerc. 2011, 6, 521–527. [Google Scholar] [CrossRef]
- Hammami, R.; Granacher, U.R.S.; Makhlouf, I.; Behm, D.G.; Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J. Strength Cond. Res. 2016, 30, 3278–3289. [Google Scholar] [CrossRef]
- Cooper, C.N.; Dabbs, N.C.; Davis, J.; Sauls, N.M. Effects of lower-body muscular fatigue on vertical jump and balance performance. J. Strength Cond. Res. 2020, 34, 2903–2910. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Luger, T.; van der Eb, J. Effects of fatigue on trunk stability in elite gymnasts. Eur. J. Appl. Physiol. 2012, 112, 1307–1313. [Google Scholar] [CrossRef]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: Prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Muehlbauer, T.; Kibele, A.; Granacher, U. Effects of strength training using unstable surfaces on strength, power and balance performance across the lifespan: A systematic review and meta-analysis. Sports Med. 2015, 45, 1645–1669. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, E.A.L.M.; Van Tulder, M.; van der Beek, A.J.; Bouter, L.M.; Van Mechelen, W. An economic evaluation of a proprioceptive balance board training programme for the prevention of ankle sprains in volleyball. Br. J. Sports Med. 2005, 39, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Korea Institute of Sport Science. Development of Training Guidelines for Student Athletes’ Exercise Efficiency. Republic of Korea. 2020. Available online: https://www.sports.re.kr/pyxis-api/1/digital-files/fb546089-1b9c-40c2-afbf-8fd29572addf (accessed on 2 August 2023).
- Russell, R. UEFA Football Development Consultant: A Review of Training Time & Games Played amongst Youth Football Club Academies for the UEFA ‘Coaches Circle Extranet’. Available online: https://sportspath.typepad.com/files/a-review-of-training-times-foruefa-coaches-circle.pdf (accessed on 2 August 2023).
Oder | Type | Intensity | Frequency | |
---|---|---|---|---|
Warm-up (10 min) | dynamic Stretching | 3 times a week for 8 weeks | ||
Main exercise (30 min) | - stability ball, rocker board, and Bosu instrument: two leg → one leg (lifting using ball) | 5 min | ||
- 1–2 weeks: box jump, drop landing, MB throws - 3–4 weeks: CMJ, MB throws, 1/2 ankle jumps - 5–6 weeks: DJ (20 cm), MB throws, leg box hoping - 7–8 weeks: MB throws with lateral bounds + stabilization, hurdle jumps (60 cm), DJ (40 cm) | 2 sets × 6 reps 3 sets × 6 reps 3 sets × 8 reps 3 sets × 8 reps | |||
- squats - planks - lunges and side lunges - single-leg Romanian deadlifts - supermans and dead bugs | - 1–2 weeks: slow t + bodyweight - 3–4 weeks: slow t + MB 2 KG - 5–6 weeks: moderate t + 2 KG - 7–8 weeks fast t + bodyweight | 3 sets × 8 reps 3 sets × 8 reps 3 sets × 10 reps 4 sets × 12 reps | ||
Cool-down (10 min) | static stretching |
Variable | ANOVA | Paired t-Test | ||||||
---|---|---|---|---|---|---|---|---|
Pre | Post | F | p-Value | Effect Size | T | p-Value | ||
Mean (SD) | Mean (SD) | |||||||
CMJ (kg) | NBS | 0.90 (0.13) | 0.92 (0.11) | 0.140 | 0.711 | 0.005 | −2.522 | 0.024 * |
NAS | 0.80 (0.15) | 0.84 (0.17) | −2.260 | 0.038 * | ||||
10 m sprint (s) | NBS | 2.25 (0.14) | 1.95 (0.12) | 23.773 | <0.001 *** | 0.442 | 60.162 | <0.001 *** |
NAS | 2.01 (0.22) | 1.94 (0.22) | 4.007 | <0.01 ** | ||||
20 m sprint (s) | NBS | 3.77 (0.24) | 3.44 (0.32) | 4.181 | 0.050 | 0.122 | 5.880 | <0.001 *** |
NAS | 3.33 (0.24) | 3.21 (0.35) | 1.360 | 0.193 | ||||
T-agility test (s) | NBS | 11.18 (0.89) | 10.62 (0.80) | 4.362 | 0.045 * | 0.127 | 4.427 | <0.01 ** |
NAS | 10.29 (0.68) | 9.39 (0.05) | 8.651 | <0.001 *** | ||||
ICDT (s) | NBS | 15.93 (0.56) | 15.96 (0.49) | 3.173 | 0.085 | 0.096 | −0.287 | 0.779 |
NAS | 15.97 (0.99) | 15.74 (0.69) | 2.198 | 0.043 * | ||||
Composite (score) | NBS | 86.46 (7.83) | 93.79 (6.37) | 12.691 | <0.01 ** | 0.297 | −5.868 | <0.001 *** |
NAS | 93.90 (6.53) | 95.35 (6.07) | −1.342 | 1.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-J.; Seon, S.-Y.; An, K.-O. Arrangement Order Effects of Neuromuscular Training on the Physical Fitness of Youth Soccer Players. Appl. Sci. 2024, 14, 4748. https://doi.org/10.3390/app14114748
Lee K-J, Seon S-Y, An K-O. Arrangement Order Effects of Neuromuscular Training on the Physical Fitness of Youth Soccer Players. Applied Sciences. 2024; 14(11):4748. https://doi.org/10.3390/app14114748
Chicago/Turabian StyleLee, Kwang-Jin, Se-Young Seon, and Keun-Ok An. 2024. "Arrangement Order Effects of Neuromuscular Training on the Physical Fitness of Youth Soccer Players" Applied Sciences 14, no. 11: 4748. https://doi.org/10.3390/app14114748
APA StyleLee, K.-J., Seon, S.-Y., & An, K.-O. (2024). Arrangement Order Effects of Neuromuscular Training on the Physical Fitness of Youth Soccer Players. Applied Sciences, 14(11), 4748. https://doi.org/10.3390/app14114748