Research Progress in Intelligent Diagnosis Key Technology for Orchard Nutrients
Abstract
:1. Introduction
2. Rapid Detection Technology for Nutrients
2.1. Rapid Detection Technology for Tree Nutrients
2.2. Rapid Detection Technology for Soil Nutrients
3. Techniques for Generating Suitable Nutrient Standards
3.1. Techniques for Generating Soil Suitable Nutrient Standards
3.2. Techniques for Generating Leaf Suitable Nutrient Standards
4. Discussion
5. Conclusions
- (1)
- Rapid detection technologies of tree nutrients based on RGB images and multispectral have the characteristics of a low cost and low computational complexity, but their prediction accuracy is not high and they are susceptible to interference. Hyperspectral technology has high prediction accuracy due to its large number of characteristic variables. The application of filtering, transformation, and sensitive band selection algorithms solves the problem of data redundancy, improves the correlation of feature variables, and reduces computational complexity. However, there are few field applications, and preprocessing algorithms that consider the impact of changes in the field environment should be further studied in depth.
- (2)
- Hyperspectral technology also plays an important role in the rapid detection of soil nutrients, demonstrating good prediction accuracy. Laser breakdown-induced spectroscopy has good prospects, as it can simultaneously detect multiple nutrients, including those with lower content. However, spectral analysis is still full of challenges.
- (3)
- The existing rapid detection technologies for nutrients are mostly aimed at nitrogen with high content, and research on the rapid detection of small and trace elements needs to be strengthened.
- (4)
- Many suitable nutrient standards for soil and leaf have been established, but they are often obtained through long-term and extensive experimentation, which is time-consuming and laborious. A universal and rapid method needs to be studied to meet the construction needs of suitable nutrient standards for different varieties of fruit trees.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural networks; |
BP | BP neural network; |
CARS | Competitive adaptive reweighted sampling; |
CB | Categorical boosting; |
CMDCP | Correction method based on dark channel prior; |
CNN | Convolutional neural network model; |
CO | Convolution operations; |
CPM | Catboost prediction model; |
CWT | Continuous wavelet transform; |
DA | Discriminant analysis; |
DNN | Deep neural network; |
DT | Decision tree; |
ELM | Extreme learning machine; |
FOD | Fractional-order derivatives; |
FSR | Full subset regression; |
FTM | First term model; |
GBRT | Gradient boosting regression tree; |
HO | Hyperopt optimization; |
ISPA | Interval successive projections algorithm; |
KNN | K-nearest neighbor; |
LDA | Linear discriminant analysis; |
LEC | Light environment correction; |
LOOCV | Leave-one-out cross-validation; |
LTM | Logarithmic term model; |
MBWL | Mixture-based weight learning; |
MCCNII | Multi-channel convolutional network incorporated Inception model; |
MLR | Multiple linear regression; |
MSC | Multiplicative scatter correction; |
MSR | Multivariate stepwise regression; |
MSRx | Multi scale Retinex; |
MWPL | Morphological-weighted penalized least squares; |
NDCSI | Normalized difference canopy shadow index; |
OLR | Ordinary linear regression; |
PCA | Principal component analysis; |
PJI | Physical-based joint inversion model; |
PLSR | Partial least squares regression; |
POA | Pearson correlation analysis; |
RF | Random forest; |
RR | Ridge regression; |
SAM | Standard addition method; |
SML | Stacking machine learning; |
SNV | Standard normal variate; |
SPA | Successive projections algorithm; |
SSAE—DLNs | Stacked sparse autoencoder—deep learning networks; |
STM | Second term model; |
SVM | Support vector machine; |
ULR | Univariate linear regression; |
UVE | Uniformative variable elimination; |
VCPA | Variable combination population analysis; |
VIP | Variable importance in projection. |
References
- Salazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M.E.; Soto, J.; Huaman, S.; Kemper, G. Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Comput. Electron. Agric. 2023, 213, 108246. [Google Scholar] [CrossRef]
- Archbold, G.; Parra, C.; Carrillo, H.; Mouazen, A.M. Towards the implementation of ISFET sensors for in-situ and real-time chemical analyses in soils: A practical review. Comput. Electron. Agric. 2023, 209, 107828. [Google Scholar] [CrossRef]
- Jiang, T.T.; Yan, P.K.; Ma, T.H.; Wang, R. Nutritional requirements and precise fertilization of wine grapes in the eastern foothills of Helan Mountain. Int. J. Agric. Biol. Eng. 2022, 15, 147–153. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Schmilovitch, Z.; Yermiyahu, U.; Rapaport, T.; Sperling, O. Assessing the nitrogen status of almond trees by visible-to-shortwave infrared reflectance spectroscopy of carbohydrates. Comput. Electron. Agric. 2020, 178, 105755. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhang, M.; Bian, L.M.; Ge, Y.F.; Li, X.P. Estimation and visualization of chlorophyll content in plant based on YOLO v5. Trans. Chin. Soc. Agric. Mach. 2022, 53, 313–321. [Google Scholar]
- Wang, J.X.; Liu, X.M.; Liu, S.X.; Quan, Z.K.; Xu, C.B.; Jiang, H. Prediction of nitrogen content in apple leaves in each growth period based on combined color characteristics. Trans. Chin. Soc. Agric. Mach. 2021, 52, 272–281. [Google Scholar]
- Xu, K.; Sun, L.L.; Wang, J.; Liu, S.X.; Yang, H.W.; Xu, N.; Zhang, H.J.; Wang, J.X. Potassium deficiency diagnosis method of apple leaves based on MLR-LDA-SVM. Front. Plant Sci. 2023, 14, 1271933. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Kunwar, S.; Ampatzidis, Y.; Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 2022, 23, 854–875. [Google Scholar] [CrossRef]
- Sun, G.Z.; Hu, T.T.; Chen, S.H.; Sun, J.X.; Zhang, J.; Ye, R.R.; Zhang, S.W.; Liu, J. Using UAV-based multispectral remote sensing imagery combined with DRIS method to diagnose leaf nitrogen nutrition status in a fertigated apple orchard. Precis. Agric. 2023, 24, 2522–2548. [Google Scholar] [CrossRef]
- Tang, W.J.; Wang, N.; Liu, G.H.; Zhao, R.M.; Li, M.Z.; Sun, H. Design of portable crop chlorophyll detector with ambient light correction. Trans. Chin. Soc. Agric. Mach. 2022, 53, 249–256. [Google Scholar]
- Luo, X.B.; Xie, T.S.; Dong, S.X. Estimation of citrus canopy chlorophyll based on UAV multispectral images. Trans. Chin. Soc. Agric. Mach. 2023, 54, 198–205. [Google Scholar]
- Cheng, J.P.; Yang, H.; Qi, J.B.; Sun, Z.D.; Han, S.Y.; Feng, H.K.; Jiang, J.Y.; Xu, W.M.; Li, Z.H.; Yang, G.J.; et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Comput. Electron. Agric. 2022, 202, 107401. [Google Scholar] [CrossRef]
- Yue, X.J.; Ling, K.J.; Wang, L.H.; Cen, Z.Z.; Lu, Y.; Liu, Y.X. Inversion of potassium content for citrus leaves based on hyperspectral and deep transfer learning. Trans. Chin. Soc. Agric. Mach. 2019, 50, 186–195. [Google Scholar]
- Liu, Z.Y.; Yang, Q.; Ling, Q.H.; Wei, Y.; Ning, Q.; Kong, F.M.; Zhang, Y.Q.; Shi, X.J.; Wang, J. Adjusted nitrogen application using non-destructive monitoring model of citrus leaf functional nitrogen content. Trans. Chin. Soc. Agric. Eng. 2023, 39, 167–175. [Google Scholar]
- Azadnia, R.; Rajabipour, A.; Jamshidi, B.; Omid, M. New approach for rapid estimation of leaf nitrogen, phosphorus, and potassium contents in apple-trees using Vis/NIR spectroscopy based on wavelength selection coupled with machine learning. Comput. Electron. Agric. 2023, 207, 107746. [Google Scholar] [CrossRef]
- Xiao, B.; Li, S.Z.; Dou, S.Q.; He, H.C.; Fu, B.L.; Zhang, T.X.; Sun, W.W.; Yang, Y.L.; Xiong, Y.K.; Shi, J.K.; et al. Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data. Comput. Electron. Agric. 2024, 217, 108559. [Google Scholar] [CrossRef]
- Ye, X.J.; Abe, S.; Zhang, S.H. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precis. Agric. 2020, 21, 198–225. [Google Scholar] [CrossRef]
- Wang, K.J.; Li, W.T.; Deng, L.; Lyu, Q.; Zheng, Y.Q.; Yi, S.L.; Xie, R.J.; Ma, Y.Y.; He, S. Rapid detection of chlorophyll content and distribution in citrus orchards based on low-altitude remote sensing and bio-sensors. Int. J. Agric. Biol. Eng. 2018, 11, 164–169. [Google Scholar] [CrossRef]
- Cao, Q.; Yang, G.J.; Duan, D.D.; Chen, L.Y.; Wang, F.; Xu, B.; Zhao, C.J.; Niu, F.F. Combining multispectral and hyperspectral data to estimate nitrogen status of tea plants (Camellia sinensis (L.) O. Kuntze) under field conditions. Comput. Electron. Agric. 2022, 198, 107084. [Google Scholar] [CrossRef]
- An, L.L.; Tang, W.J.; Qiao, L.; Zhao, R.M.; Sun, H.; Li, M.Z.; Zhang, Y.; Zhang, M.; Li, X.H. Estimation of chlorophyll distribution in banana canopy based on RGB-NIR image correction for uneven illumination. Comput. Electron. Agric. 2022, 202, 107358. [Google Scholar] [CrossRef]
- Du, S.F.; Pan, Q.; Xu, Y.; Cao, S.S. Comparison of three measurement models of soil nitrate-nitrogen based on ion-selective electrodes. Int. J. Agric. Biol. Eng. 2020, 13, 211–216. [Google Scholar] [CrossRef]
- Lu, X.; Pan, L.P.; Li, Y.H.; Chen, M.; Liu, G.; Zhang, M. Comprison of detection models for soil nitrate concentration based on ISE. Trans. Chin. Soc. Agric. Mach. 2021, 52, 297–303. [Google Scholar]
- Jia, C.H.; Zhou, T.; Zhang, K.L.; Yang, L.; Zhang, D.X.; Cui, T.; He, X.T.; Sang, X.T. Design and experimentation of soil organic matter content detection system based on high-temperature excitation principle. Comput. Electron. Agric. 2023, 214, 108325. [Google Scholar] [CrossRef]
- Li, M.W.; Zhu, Q.H.; Liu, H.; Xia, X.M.; Huang, D.Y. Method for detecting soil total nitrogen contents based on pyrolysis and artificial olfaction. Int. J. Agric. Biol. Eng. 2022, 15, 167–176. [Google Scholar] [CrossRef]
- Li, M.W.; Zhu, Q.H.; Xia, X.M.; Liu, H.; Huang, D.Y. Detection method of soil organic matter based on multi-sensor artificial olfactory system. Trans. Chin. Soc. Agric. Mach. 2021, 52, 109–119. [Google Scholar]
- Li, M.W.; Xia, X.M.; Zhu, Q.H.; Liu, H.; Huang, D.Y.; Wang, G. Method for detecting soil total nitrogen content and characteristic optimization based on pyrolysis and electronic nose. Trans. Chin. Soc. Agric. Eng. 2021, 37, 73–84. [Google Scholar]
- Munnaf, M.A.; Mouazen, A.M. Development of a soil fertility index using on-line Vis-NIR spectroscopy. Comput. Electron. Agric. 2021, 188, 106341. [Google Scholar] [CrossRef]
- Wang, Y.T.; Li, M.Z.; Ji, R.H.; Wang, M.J.; Zheng, L.H. A deep learning-based method for screening soil total nitrogen characteristic wavelengths. Comput. Electron. Agric. 2021, 187, 106228. [Google Scholar] [CrossRef]
- Wang, Y.T.; Li, M.Z.; Ji, R.H.; Wang, M.J.; Zhang, Y.; Zheng, L.H. Construction of complex features for predicting soil total nitrogen content based on convolution operations. Soil Tillage Res. 2021, 213, 105109. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhang, H.; Li, F.D.; Gu, C.K.; Qiao, Y.F.; Huang, S.Y. Assessment of calibration methods for nitrogen estimation in wet and dry soil samples with different wavelength ranges using near-infrared spectroscopy. Comput. Electron. Agric. 2021, 186, 106181. [Google Scholar] [CrossRef]
- Guerrero, A.; Javadi, S.H.; Mouazen, A.M. Automatic detection of quality soil spectra in an online vis-NIR soil sensor. Comput. Electron. Agric. 2022, 196, 106857. [Google Scholar] [CrossRef]
- Qiao, H.L.; Shi, X.B.; Chen, H.Z.; Lyu, J.Y.; Hong, S.Y. Effective prediction of soil organic matter by deep SVD concatenation using FT-NIR spectroscopy. Soil Tillage Res. 2022, 215, 105223. [Google Scholar] [CrossRef]
- Wan, M.D.; Yan, T.Y.; Xu, G.X.; Liu, A.B.; Zhou, Y.B.; Wang, H.; Jin, X. MAE-NIR: A masked autoencoder that enhances near-infrared spectral data to predict soil properties. Comput. Electron. Agric. 2023, 215, 108427. [Google Scholar] [CrossRef]
- Lin, L.X.; Liu, X.X. Mixture-based weight learning improves the random forest method for hyperspectral estimation of soil total nitrogen. Comput. Electron. Agric. 2022, 192, 106634. [Google Scholar] [CrossRef]
- Tavakoli, H.; Correa, J.; Sabetizade, M.; Vogel, S. Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches. Soil Tillage Res. 2023, 229, 105684. [Google Scholar] [CrossRef]
- Yang, C.B.; Feng, M.C.; Song, L.F.; Jing, B.H.; Xie, Y.K.; Wang, C.; Yang, W.D.; Xiao, L.J.; Zhang, M.J.; Song, X.Y. Study on hyperspectral monitoring model of soil total nitrogen content based on fractional-order derivative. Comput. Electron. Agric. 2022, 201, 107307. [Google Scholar] [CrossRef]
- Peng, T.; Zhao, L.; Zhang, A.J.; Yang, X.N.; Zhou, Z.; Chang, X.H. UAV hyperspectral response characteristics and estimation model construction of soil total nitrogen. Trans. Chin. Soc. Agric. Eng. 2023, 39, 92–101. [Google Scholar]
- Xu, X.B.; Ma, F.; Zhou, J.M.; Du, C.W. Applying convolutional neural networks (CNN) for end-to-end soil analysis based on laser-induced breakdown spectroscopy (LIBS) with less spectral preprocessing. Comput. Electron. Agric. 2022, 199, 107171. [Google Scholar] [CrossRef]
- Tavares, T.R.; Mouazen, A.M.; Nunes, L.C.; Santos, F.R.; Melquiades, F.L.; Silva, T.R.; Krug, F.J.; Molin, J.P. Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis. Soil Tillage Res. 2022, 216, 105250. [Google Scholar] [CrossRef]
- Li, Q.C.; Li, M.Z.; Yang, W.; Sun, H.; Zhang, Y. Research progress on the rapid detection of soil components using Raman spectroscopy: A review. Trans. Chin. Soc. Agric. Eng. 2023, 39, 1–9. [Google Scholar]
- Xing, Z.; Du, C.W.; Shen, Y.Z.; Ma, F.; Zhou, J.M. A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS). Comput. Electron. Agric. 2021, 191, 106549. [Google Scholar] [CrossRef]
- Wang, W.C.; Yang, W.; Zhou, P.; Cui, Y.L.; Wang, D.; Li, M.Z. Development and performance test of a vehicle-mounted total nitrogen content prediction system based on the fusion of near-infrared spectroscopy and image information. Comput. Electron. Agric. 2022, 192, 106613. [Google Scholar] [CrossRef]
- Zhou, P.; Li, M.Z.; Yang, W.; Yao, X.Q.; Liu, Z.; Ji, R.H. Development and performance tests of an on-the-go detector of soil total nitrogen concentration based on near-infrared spectroscopy. Precis. Agric. 2021, 22, 1479–1500. [Google Scholar] [CrossRef]
- Nawar, S.; Richard, F.; Kassim, A.M.; Tekin, Y.; Mouazen, A.M. Fusion of Gamma-rays and portable X-ray fluorescence spectral data to measure extractable potassium in soils. Soil Tillage Res. 2022, 223, 105472. [Google Scholar] [CrossRef]
- Wang, W.C.; Yang, W.; Cui, Y.L.; Zhou, P.; Wang, D.; Li, M.Z. Prediction of soil total nitrogen based on CatBoost algorithm and fusion of image spectral features. Trans. Chin. Soc. Agric. Mach. 2021, 52, 316–322. [Google Scholar]
- Ahmed, U.; Lin, J.C.; Sribastava, G.; Djenouri, Y. A nutrient recommendation system for soil fertilization based on evolutionary computation. Comput. Electron. Agric. 2021, 189, 106407. [Google Scholar] [CrossRef]
- Gokalp, E. Fertilizer application management under uncertainty using approximate dynamic programming. Comput. Ind. Eng. 2021, 161, 107624. [Google Scholar] [CrossRef]
- Zhang, J.F.; Geng, Q.L.; Cao, W.C.; Chen, Q.; Chang, R.X.; Liang, C.; Chen, S.H. Effects of type and amount of nitrogen fertilizer on photosynthetic characteristics and yield of jujube under drip irrigation. Trans. Chin. Soc. Agric. Eng. 2020, 36, 92–98. [Google Scholar]
- Termin, D.; Linker, R.; Baram, S.; Raveh, E.; Ohana-Levi, N.; Paz-Kagan, T. Dynamic delineation of management zones for site-specific nitrogen fertilization in a citrus orchard. Precis. Agric. 2023, 24, 1570–1592. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.H.; Liu, S.Y.; Ma, Y.Y.; Lyu, Q.; Yi, L.S.; Xie, R.J.; Yang, X.; Yang, Y.; Zhen, Y.Q. Establishing and verifying the nutrient expert system for citrus fertilization recommendation. Trans. Chin. Soc. Agric. Eng. 2023, 39, 146–154. [Google Scholar]
Sample Type | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
Canopy Hass avocado [1] | Collected by UAV with camera | CNN Otsu’s method | Vegetation Indices | Nitrogen | Better VIs: MGRVI | |
Canopy Willow [5] | Collected by Phenotype information collection platform with camera | YOLO V5 SNV | Color factor | Chlorophyll | FTM STM LTM | Best: R, G, B, G/R, G/B + LTM R2: 0.731, RMSE: 2.16 |
Leaf Apple [6] | Collected by camera | MSRx | R, G, B 14 combination | Nitrogen | PCA SVM BP ELM | Best: PCA-SVM MAE: ≤0.64 g/kg RMSE: ≤0.80 g/kg |
Leaf Apple [7] | Collected by camera | Gaussian filter Threshold segmentation Canny operator MSR-color restoration | Color features Shape features | Potassium | MLR LDA SVM KNN DT | Best: MLR-LDA-SVM Average accuracy: 93.5% |
Sample Type | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
Canopy Citrus [8] | Collected by UAV with multispectral camera | Red, Green, Blue, Red edge, Near-infrared | Macronutrients Micronutrients | GBRT | Average error: For macronutrients: <17% For micronutrients: <30% | |
Canopy Apple [9] | Collected by UAV with multispectral camera | Vegetation index | Nitrogen Phosphorus Potassium | OLR MSR RR | Better: MSR, RR LNC R2: 0.52–0.76 LPC R2: 0.67, 0.69 LKC R2: 0.76 | |
Non woven fabric Impregnated chlorophyll [10] | Collected by multispectral sensor | LEC | NDVI | Chlorophyll | R2: 0.965 | |
Canopy Citrus [11] | Collected by UAV with multispectral camera | NDCSI | Vegetation index Texture features | Chlorophyll | FSR PLSR DNN | Best: Deep neural network R2: 0.665 RMSE: 9.49 mg/m2 |
Canopy Apple [12] | Collected by UAV with multispectral camera | 3D RTM LESS Linear interpolation | NDVI, Clgreen Clred edge, GNDVI | Chlorophyll | PJI | More robust VIs: GNDVI, CIred edge, CIgreen |
Sample Type | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
Leaf Citrus [13] | Collected by spectrometer | SPA Wavelet denoising | Reflectance values | Potassium | SSAE–DLNs | R2: 0.8771 RMSE: 0.5528 |
Leaf Citrus [14] | Collected by spectrometer | SNV | Reflectance values | Nitrogen | PLSR SVM BP RF | Best: BP fruit expansion period: R2:0.78 fruit color-changed period: R2:0.74 |
Almond Dried and powdered [4] | Collected by spectrometer | Reflectance values | Carbohydrates | PLSR DA | Overall accuracy: >90% Unique spectral region: SWIR | |
Leaf Apple [15] | Collected by spectrometer | SNV MSC Spectral derivatives PLSR Random frog (Rfrog) VIP | Multi-band reflectance | Nitrogen Phosphorus Potassium | RF ANN SVM PLSR | MSC + D2-Rfrog-RF: rp = 0.985 SNV + D2-Rfrog-RF: rp = 0.977 SNV + D2-Rfrog-RF: rp = 0.978 |
Leaf Citrus [16] | Collected by spectrometer | FOD CWT | Dual-band Tri-band | Chlorophyll | HO PLSR | Optimal range: 550 nm, 750 nm Kurtosis: 3.2, skewness: 0.066 |
Leaf and canopy Apple [17] | Collected by spectrometer | First derivative | Reflectance values | Nitrogen | PLSR MLR | The MLR model based on the raw reflectance was better (4 key wavelengths, less data) |
Sample Type | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
Leaf and canopy Citrus [18] | Multiplex 3.6 sensor FieldSpec4 radiometer Multispectral | Reflectance values RVI NDVI | Chlorophyll | ULR MLR PLSR | Based on RVI: R2: 0.7063 Based on NDVI: R2: 0.7343 | |
Canopy Tea plant [19] | Hyperspectral Multispectral (spectrometer, multispectral camera) | CARS POA, VCPA | 1664 nm, 1665 nm H, VOG, BGI | Nitrogen | SVM | R2: 0.9186 RMSE: 0.0560 |
Canopy Banana [20] | RGB-NIR (RGB camera, and NIR cameras) | CMDCP | Color features Vegetation indices | Chlorophyll | RF | RC2: 0.738, RMSEC: 6.296 RV2: 0.692, RMSEV: 7.357 |
Method | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|
Ion-selective electrode [21] | Reading of nitrate ISE | Nitrate nitrogen | BP | The average relative errors: 5.07% and 8.81% |
Ion-selective electrode [22] | Reading of nitrate ISE | Nitrate nitrogen | SAM | R2: >0.9 RMSE: 2.21–5.49 mg/L |
High-temperature excitation [23] | Carbon dioxide content | Organic matter | MLR | The 15 mm 20 s model had the highest accuracy, >90%, |
Pyrolysis and artificial olfaction [24,25,26] | Artificial olfaction feature space | Total nitrogen | PLSR BP | R2: 0.92186 RMSE: 0.21781 RPD: 3.3426 |
Reference | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
[27] | Collected by on-lone soil sensing platform | Moving average Savitzky–Golay 1st-order derivative Smoothing | Vis-NIR reflectance values | Soil fertility index | PLSR LOOCV | RPD: 2.01 |
[28] | LUCAS 2009 TOPSOIL data | 8–50 characteristic wavelengths reflectance values | Total nitrogen | MCCNII | R2: 0.93 RMSEP: 0.97 g/kg RPD: 3.85 | |
[29] | LUCAS 2009 TOPSOIL data | Embedded method | 16 characteristic wavelengths reflectance values | Total nitrogen | CO | R2: 0.86 RMSEP: 1.98 g/kg RPD: 1.89 |
[30] | Collected by spectrometer | Successive projections algorithm | Selected wavelengths reflectance values | Nitrogen | PLSR BP | Better: BPNN Wet soil, R2: 0.93, RMSEP: 0.0297%, RPD: 4.00 Dry soil, R2: 0.99, RMSEP: 0.0132%, RPD: 8.76 |
[31] | Collected by online multisensor platform | Similarity algorithms Machine learning algorithms | Filtering of very noisy and non-soil spectra can be achieved using machine learning algorithms | |||
[32] | Collected by spectrometer LUCAS 2009 TOPSOIL data | Fourier transform | Near-infrared spectroscopy reflectance values | Organic carbon Total nitrogen | SVD-CNN | R2: 0.9304 for organic carbon R2: 0.9319 for total nitrogen |
[33] | Collected by spectrometer LUCAS 2009 TOPSOIL data | Spectral enhancement method based on the masked autoencoder | Near-infrared spectroscopy reflectance values | Nitrogen Phosphorus Potassium | R2: Nitrogen 0.941 Phosphorus 0.926 Potassium 0.903 | |
[34] | Collected by spectrometer | First derivative | Vis–NIR spectroscopy reflectance values | Total nitrogen | MBWL RF | R2: 0.757 RMSE: 0.235 g/kg Relative error: 10% |
[35] | LUCAS 2009 TOPSOIL data | Dual-wavelength index transformations | Vis–NIR spectroscopy reflectance values | CaCO3 N OC | SML | RMSE/R2: CaCO3 25.71/0.96 N 1.11/0.92 OC 21.34/0.95 |
[36] | Collected by spectrometer | Factional-order derivative Uninformative variable elimination | 272 bands reflectance values | Total nitrogen | PLSR | R2v: 0.7937 RMSEV: 0.1976 g/kg RPDV: 2.1904 |
[37] | Collected by UAV with hyperspectral camera | First derivative Pearson correlation coefficient | Sensitive bands reflectance values | Total nitrogen | RF | R2: 0.859 RMSE: 0.143 g/kg |
Reference | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
[38] | Collected by MobiLIBS system | MWPL | Reflectance values | pH SOM TN, TP, TK | CNN | Decreased the RMSEV by 1.48%, 4.97%, 9.56%, 10.05%, and 2.90%, respectively. |
[39] | Collected by spectrometer | ISPA | Reflectance values | SOM Extractable P, K, Ca, Mg | MLR | RPD: >1.40 |
Reference | Data Sources | Preprocessing Algorithm | Characteristic Variable | Predictive Variables | Regression Model | Results |
---|---|---|---|---|---|---|
[41] | FTIR-ATR Raman (Raman spectrometer, infrared spectrometer) | Wavelet transform Fast Fourier Transform AIRPLS CARS | Reflectance values | Organic matter | PLSR | RMSEP: 4.35 g/kg |
[42,43] | Near-infrared Image (sensor) | Uniform variable illumination Adaptive weighted sampling | 7 characteristic wavelengths reflectance values | Total nitrogen | CPM | R2: 0.8 Relative error: <10% |
[44] | Gamma-rays X-ray (gamma-ray system, XRF spectrometer) | Moving average Smoothing with SG Maximum normalization | Reflectance values | Extractable potassium | PLSR | R2: 0.75 RMSE: 31.3 mg/kg RPD: 2.03 |
[45] | Spectroscopy RGB (spectrometer, camera) | UVE CARS | 7 characteristic wavelengths reflectance values Angular second moment Energy, Moment of inertia Gray mean, Entropy | Total nitrogen | CB | R2: 0.8668 RMSE: 0.1602 g/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Qi, Y.; Huang, K.; Sun, Y.; Wang, W.; Lyu, X. Research Progress in Intelligent Diagnosis Key Technology for Orchard Nutrients. Appl. Sci. 2024, 14, 4744. https://doi.org/10.3390/app14114744
Yuan Q, Qi Y, Huang K, Sun Y, Wang W, Lyu X. Research Progress in Intelligent Diagnosis Key Technology for Orchard Nutrients. Applied Sciences. 2024; 14(11):4744. https://doi.org/10.3390/app14114744
Chicago/Turabian StyleYuan, Quanchun, Yannan Qi, Kai Huang, Yuanhao Sun, Wei Wang, and Xiaolan Lyu. 2024. "Research Progress in Intelligent Diagnosis Key Technology for Orchard Nutrients" Applied Sciences 14, no. 11: 4744. https://doi.org/10.3390/app14114744
APA StyleYuan, Q., Qi, Y., Huang, K., Sun, Y., Wang, W., & Lyu, X. (2024). Research Progress in Intelligent Diagnosis Key Technology for Orchard Nutrients. Applied Sciences, 14(11), 4744. https://doi.org/10.3390/app14114744