Advancing Visible Spectroscopy through Integrated Machine Learning and Image Processing Techniques
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.; Fox, N. Progress in Field Spectroscopy. Remote Sens. Environ. 2009, 113, S92–S109. [Google Scholar] [CrossRef]
- John-Herpin, A.; Tittl, A.; Kühner, L.; Richter, F.; Huang, S.H.; Shvets, G.; Oh, S.; Altug, H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Adv. Mater. 2022, 35, 2110163. [Google Scholar] [CrossRef]
- Pholpho, T.; Pathaveerat, S.; Sirisomboon, P. Classification of Longan Fruit Bruising Using Visible Spectroscopy. J. Food Eng. 2011, 104, 169–172. [Google Scholar] [CrossRef]
- Wang, N.; ElMasry, G. Bruise Detection of Apples Using Hyperspectral Imaging. In Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2010; pp. 295–320. [Google Scholar]
- Beberniss, T.J.; Ehrhardt, D.A. High-Speed 3D Digital Image Correlation Vibration Measurement: Recent Advancements and Noted Limitations. Mech. Syst. Signal Process. 2017, 86, 35–48. [Google Scholar] [CrossRef]
- Van Vliet, J.A.J.M.; De Groot, J.J. High-Pressure Sodium Discharge Lamps. IEE Proc. 1981, 128, 415. [Google Scholar] [CrossRef]
- Kitsinelis, S.; Devonshire, R.; Stone, D.A.; Tozer, R.C. Medium Pressure Mercury Discharge for Use as an Intense White Light Source. J. Phys. D Appl. Phys. 2005, 38, 3208–3216. [Google Scholar] [CrossRef]
- Trunec, D.; Brablec, A.; Buchta, J. Atmospheric Pressure Glow Discharge in Neon. J. Phys. D Appl. Phys. 2001, 34, 1697–1699. [Google Scholar] [CrossRef]
- Golubovskiǐ, Y.B.; Maйopoв, B.A.; Behnke, J.F.; Behnke, J.F. Modelling of the Homogeneous Barrier Discharge in Helium at Atmospheric Pressure. J. Phys. D Appl. Phys. 2002, 36, 39–49. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy. J. Phys. Chem. C 2009, 113, 4277–4285. [Google Scholar] [CrossRef]
- Godiksen, A.; Vennestrøm, P.N.R.; Rasmussen, S.B.; Mossin, S. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy. Top. Catal. 2016, 60, 13–29. [Google Scholar] [CrossRef]
- Windom, B.; Sawyer, W.G.; Hahn, D.W. A Raman Spectroscopic Study of MOS2 and MOO3: Applications to Tribological Systems. Tribol. Lett. 2011, 42, 301–310. [Google Scholar] [CrossRef]
- Rauscher, B.J.; Canavan, E.R.; Moseley, S.H.; Sadleir, J.E.; Stevenson, T. Detectors and Cooling Technology for Direct Spectroscopic Biosignature Characterization. J. Astron. Telesc. Instrum. Syst. 2016, 2, 041212. [Google Scholar] [CrossRef]
- Kurniastuti, I.; Yuliati, E.N.I.; Yudianto, F.; Wulan, T.D. Determination of Hue Saturation Value (HSV) Color Feature in Kidney Histology Image. J. Phys. Conf. Ser. 2022, 2157, 012020. [Google Scholar] [CrossRef]
- Cantrell, K.; Erenas, M.M.; de Orbe-Payá, I.; Capitán-Vallvey, L.F. Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors. Anal. Chem. 2010, 82, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Gu, L.; Shen, Y.; Guan, Q.; Wang, C.; Deng, H.; Zhong, X.; Xia, M.; Shi, D. Computational Framework for Turbid Water Single-Pixel Imaging by Polynomial Regression and Feature Enhancement. IEEE Trans. Instrum. Meas. 2023, 72, 5021111. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xu, H.; Jiang, G.; Yu, M.; Ren, T.; Luo, T.; Zhu, Z. UIE-ConvFormer: Underwater Image Enhancement Based on Convolution and Feature Fusion Transformer. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 1952–1968. [Google Scholar] [CrossRef]
- Simbolon, S.; Jumadi, J.; Khairil, K.; Yupianti, Y.; Yulianti, L.; Supiyandi, S.; Windarto, A.P.; Wahyuni, S. Image Segmentation Using Color Value of the Hue in CT Scan Result. J. Phys. Conf. Ser. 2022, 2394, 012017. [Google Scholar] [CrossRef]
- Garaba, S.P.; Friedrichs, A.; Voß, D.; Zielinski, O. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing. Int. J. Environ. Res. Public Health 2015, 12, 16096–16109. [Google Scholar] [CrossRef]
- Verma, M.; Yadav, V.; Kaushik, V.D.; Pathak, V.K. Multiple Polynomial Regression for Solving Atmospheric Scattering Model. Int. J. Adv. Intell. Paradig. 2019, 12, 400. [Google Scholar] [CrossRef]
- Kang, Z.; Fan, R.; Chen, Z.; Wu, Y.; Lin, Y.; Li, K.; Qu, R.; Xu, L. The Rapid Non-Destructive Differentiation of Different Varieties of Rice by Fluorescence Hyperspectral Technology Combined with Machine Learning. Molecules 2024, 29, 682. [Google Scholar] [CrossRef] [PubMed]
- Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Thomas, G.M.H. Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature. Diagnostics 2022, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
- Ede, J.M. Deep Learning in Electron Microscopy. Mach. Learn. Sci. Technol. 2021, 2, 011004. [Google Scholar] [CrossRef]
- Goodacre, R. Explanatory Analysis of Spectroscopic Data Using Machine Learning of Simple, Interpretable Rules. Vib. Spectrosc. 2003, 32, 33–45. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Ding, Y.; Jiang, H.; Thiers, B.H.; Wang, J. Automatic Diagnosis of Melanoma Using Machine Learning Methods on a Spectroscopic System. BMC Med. Imaging 2014, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Rodellar, J.; Alférez, S.; Acevedo, A.; Molina, Á.; Merino, A. Image Processing and Machine Learning in the Morphological Analysis of Blood Cells. Int. J. Lab. Hematol. 2018, 40, 46–53. [Google Scholar] [CrossRef]
- Carey, C.; Boucher, T.; Mahadevan, S.; Dyar, M.D.; Bartholomew, P. Machine Learning Tools for Mineral Recognition and Classification from Raman Spectroscopy. J. Raman Spectrosc. 2014, 1783, 5053. [Google Scholar] [CrossRef]
- Zeng, C.; Yan, Y.; Tang, J.; Wu, Y.; Zhong, S. Speciation of Arsenic(III) and Arsenic(V) Based on Triton X-100 Hollow Fiber Liquid Phase Microextraction Coupled with Flame Atomic Absorption Spectrometry. Spectrosc. Lett. 2017, 50, 220–226. [Google Scholar] [CrossRef]
- Bai, F.; Fan, Z. Flow Injection Micelle-Mediated Methodology for Determination of Lead by Electrothermal Atomic Absorption Spectrometry. Mikrochim. Acta 2007, 159, 235–240. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Cui, S.; Luo, C.; Li, C.; Zhuang, Z. Predicting the Effective Mechanical Property of Heterogeneous Materials by Image Based Modeling and Deep Learning. Comput. Methods Appl. Mech. Eng. 2019, 347, 735–753. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, B.; Mu, X.; Xu, J.; Du, B.; Wang, J.; Liu, Z.; Tong, Z. Performance of Classification Models of Toxins Based on RAMAN Spectroscopy Using Machine Learning Algorithms. Molecules 2023, 29, 197. [Google Scholar] [CrossRef] [PubMed]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A. The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Yang, Q.; Tian, S.; Xu, H. Identification of the Geographic Origin of Peaches by VIS-NIR Spectroscopy, Fluorescence Spectroscopy and Image Processing Technology. J. Food Compos. Anal. 2022, 114, 104843. [Google Scholar] [CrossRef]
- Simon, L.L.; Nagy, Z.K.; Hungerbühler, K. Comparison of External Bulk Video Imaging with Focused Beam Reflectance Measurement and Ultra-Violet Visible Spectroscopy for Metastable Zone Identification in Food and Pharmaceutical Crystallization Processes. Chem. Eng. Sci. 2009, 64, 3344–3351. [Google Scholar] [CrossRef]
- Vong, C.N.; Larbi, P.A. Comparison of Image Data Obtained with Different Commercial Cameras for Use in Visible Spectroscopy. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL. USA, 17–20 July 2016. [Google Scholar] [CrossRef]
- Liŭ, D.; Sun, D.; Zeng, X. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food Bioprocess Technol. 2013, 7, 307–323. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.G.; et al. Recent Advances in Techniques for Hyperspectral Image Processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Yonezawa, K.; Takahashi, M.; Yatabe, K.; Nagatani, Y.; Shimizu, N. MOLASS: Software for Automatic Processing of Matrix Data Obtained from Small-Angle X-Ray Scattering and UV–Visible Spectroscopy Combined with Size-Exclusion Chromatography. Biophys. Physicobiol. 2023, 20, e200001. [Google Scholar] [CrossRef]
- Grasse, E.K.; Torcasio, M.H.; Smith, A.W. Teaching UV–Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. J. Chem. Educ. 2015, 93, 146–151. [Google Scholar] [CrossRef]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.; Pavri, B.; Chovit, C.; Solis, M.; et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Shakya, J.R.; Shashi, F.H.; Wang, A.X. Plasmonic Color Filter Array Based Visible Light Spectroscopy. Sci. Rep. 2021, 11, 23687. [Google Scholar] [CrossRef]
- Usami, M.; Iwamoto, T.; Fukasawa, R.; Tani, M.; Watanabe, M.; Sakai, K. Development of a THz Spectroscopic Imaging System. Phys. Med. Biol. 2002, 47, 3749–3753. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.T.; Morales, K.M.; Palmer, M.R.; De La Rie, E.R. Visible and Infrared Reflectance Imaging Spectroscopy of Paintings: Pigment Mapping and Improved Infrared Reflectography. In Proceedings of the SPIE, Munich, Germany, 7 July 2009. [Google Scholar] [CrossRef]
- Ktash, M.A.; Hauler, O.; Ostertag, E.; Brecht, M. Ultraviolet-Visible/near Infrared Spectroscopy and Hyperspectral Imaging to Study the Different Types of Raw Cotton. J. Spectr. Imaging 2020, 9, 1–11. [Google Scholar] [CrossRef]
- Baka, N.A.; Abu-Siada, A.; Islam, S.; El-Naggar, M. A New Technique to Measure Interfacial Tension of Transformer Oil Using UV-Vis Spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1275–1282. [Google Scholar] [CrossRef]
- Haffert, S.Y.; Males, J.R.; Close, L.M.; Van Gorkom, K.; Long, J.D.; Hedglen, A.D.; Guyon, O.; Schatz, L.; Kautz, M.; Lumbres, J.; et al. The Visible Integral-field Spectrograph eXtreme (VIS-X): High-resolution spectroscopy with MagAO-X. arXiv 2022, arXiv:2208.02720. [Google Scholar]
- Van der Woerd, H.J.; Wernand, M.R. Hue-Angle Product for Low to Medium Spatial Resolution Optical Satellite Sensors. Remote Sens. 2018, 10, 180. [Google Scholar] [CrossRef]
- Wikipedia Contributors Sodium-Vapor Lamp. Available online: https://en.wikipedia.org/wiki/Sodium-vapor_lamp (accessed on 7 April 2024).
- Wikipedia Contributors Gas-Discharge Lamp. Available online: https://en.wikipedia.org/wiki/Gas-discharge_lamp (accessed on 7 April 2024).
- Xometry, T. Copper Vapor Laser: Definition, Importance, and How It Works. Available online: https://www.xometry.com/resources/sheet/copper-vapor-laser/#:~:text=A%20copper%20vapor%20laser%20is,temperatures%20required%20to%20vaporize%20copper%20lamp (accessed on 7 April 2024).
- Atomic Spectra. Available online: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/atspect.html (accessed on 7 April 2024).
- Wikipedia Contributors Mercury-Vapor Lamp. Available online: https://en.wikipedia.org/wiki/Mercury-vapor_lamp (accessed on 7 April 2024).
Feature | Specification |
---|---|
Technique | Atomic Absorption Spectroscopy (AAS) |
Wavelength Range | 190 nm to 900 nm |
Spectral Bandwidth | 0.1, 0.2, 0.4, 1.0, 2.0 nm (selectable) |
Wavelength Accuracy | ±0.25 nm |
Wavelength Repeatability | ±0.15 nm |
Baseline Drift | ≤0.005 Abs/30 min |
Background Correction | Deuterium lamp background correction |
Atomisation Methods | Flame Atomiser, Graphite Furnace Atomiser |
Heating temperature range (Graphite Furnace) | Room temperature~2650 °C |
Lamp Type | Hollow Cathode Lamp (HCL) |
Number of Lamp Positions | 8 (automatic turret) |
Sample Types | Liquids, Solids |
Precision (RSD) | ≤3% |
Software Compatibility | Windows Platform |
Steps | Code | Comment |
---|---|---|
1. | X_train, X_test, y_train, y_test = train_test_split (X, Y, test_size = 0.2, random_state = 0) | Splitting the data into training and testing sets |
2. | poly_reg = PolynomialFeatures (degree = 6) | Creating polynomial features with specified degree |
3. | X_poly = poly_reg.fit_transform (X_train) | Transforming the training features into polynomial features |
4. | pol_reg = LinearRegression () | Initialising linear regression model |
5. | pol_reg.fit (X_poly, y_train) | Fitting the polynomial features to the target variable |
Hue | Training Data [48] | Polynomial Regression | Hue | Training Data [48] | Polynomial Regression | Hue | Training Data [48] | Polynomial Regression |
---|---|---|---|---|---|---|---|---|
0 | 610 | 613.13 | 81 | 561 | 558.97 | 162 | 496 | 493.99 |
1 | 609 | 611.02 | 82 | 560 | 558.10 | 163 | 496 | 493.70 |
2 | 607 | 609.04 | 83 | 560 | 557.22 | 164 | 495 | 493.42 |
3 | 605 | 607.17 | 84 | 559 | 556.32 | 165 | 495 | 493.16 |
4 | 604 | 605.42 | 85 | 558 | 555.41 | 166 | 495 | 492.90 |
5 | 603 | 603.76 | 86 | 557 | 554.49 | 167 | 495 | 492.67 |
6 | 602 | 602.21 | 87 | 557 | 553.56 | 168 | 494 | 492.44 |
7 | 601 | 600.75 | 88 | 556 | 552.62 | 169 | 494 | 492.23 |
8 | 600 | 599.39 | 89 | 554 | 551.67 | 170 | 494 | 492.03 |
9 | 599 | 598.10 | 90 | 553 | 550.72 | 171 | 494 | 491.84 |
10 | 598 | 596.90 | 91 | 552 | 549.75 | 172 | 494 | 491.66 |
11 | 597 | 595.78 | 92 | 552 | 548.77 | 173 | 493 | 491.49 |
12 | 596 | 594.73 | 93 | 552 | 547.79 | 174 | 493 | 491.33 |
13 | 595 | 593.75 | 94 | 551 | 546.80 | 175 | 493 | 491.18 |
14 | 594 | 592.83 | 95 | 550 | 545.81 | 176 | 493 | 491.04 |
15 | 594 | 591.97 | 96 | 549 | 544.81 | 177 | 492 | 490.91 |
16 | 593 | 591.17 | 97 | 548 | 543.80 | 178 | 492 | 490.78 |
17 | 592 | 590.43 | 98 | 547 | 542.79 | 179 | 492 | 490.66 |
18 | 592 | 589.73 | 99 | 546 | 541.78 | 180 | 492 | 490.54 |
19 | 591 | 589.08 | 100 | 545 | 540.76 | 181 | 492 | 490.43 |
20 | 590 | 588.47 | 101 | 544 | 539.75 | 182 | 491 | 490.33 |
21 | 590 | 587.90 | 102 | 542 | 538.73 | 183 | 491 | 490.23 |
22 | 589 | 587.37 | 103 | 541 | 537.71 | 184 | 491 | 490.13 |
23 | 589 | 586.88 | 104 | 540 | 536.69 | 185 | 491 | 490.03 |
24 | 588 | 586.41 | 105 | 538 | 535.67 | 186 | 490 | 489.93 |
25 | 588 | 585.97 | 106 | 537 | 534.65 | 187 | 490 | 489.84 |
26 | 587 | 585.56 | 107 | 536 | 533.63 | 188 | 490 | 489.74 |
27 | 586 | 585.17 | 108 | 534 | 532.61 | 189 | 490 | 489.64 |
28 | 586 | 584.81 | 109 | 533 | 531.60 | 190 | 489 | 489.54 |
29 | 585 | 584.46 | 110 | 531 | 530.59 | 191 | 489 | 489.44 |
30 | 585 | 584.12 | 111 | 530 | 529.59 | 192 | 489 | 489.33 |
31 | 584 | 583.80 | 112 | 528 | 528.59 | 193 | 489 | 489.22 |
32 | 584 | 583.50 | 113 | 526 | 527.59 | 194 | 489 | 489.10 |
33 | 583 | 583.20 | 114 | 525 | 526.60 | 195 | 488 | 488.97 |
34 | 583 | 582.91 | 115 | 523 | 525.62 | 196 | 488 | 488.83 |
35 | 583 | 582.63 | 116 | 522 | 524.64 | 197 | 488 | 488.69 |
36 | 582 | 582.35 | 117 | 521 | 523.67 | 198 | 488 | 488.53 |
37 | 582 | 582.07 | 118 | 519 | 522.71 | 199 | 487 | 488.37 |
38 | 581 | 581.79 | 119 | 518 | 521.76 | 200 | 487 | 488.19 |
39 | 581 | 581.52 | 120 | 517 | 520.81 | 201 | 487 | 488.00 |
40 | 580 | 581.24 | 121 | 516 | 519.88 | 202 | 486 | 487.79 |
41 | 580 | 580.96 | 122 | 515 | 518.96 | 203 | 486 | 487.57 |
42 | 579 | 580.67 | 123 | 514 | 518.04 | 204 | 486 | 487.33 |
43 | 579 | 580.38 | 124 | 513 | 517.14 | 205 | 486 | 487.07 |
44 | 578 | 580.08 | 125 | 512 | 516.25 | 206 | 485 | 486.79 |
45 | 578 | 579.78 | 126 | 511 | 515.37 | 207 | 485 | 486.50 |
46 | 578 | 579.46 | 127 | 510 | 514.51 | 208 | 485 | 486.18 |
47 | 577 | 579.14 | 128 | 510 | 513.66 | 209 | 484 | 485.84 |
48 | 577 | 578.80 | 129 | 509 | 512.82 | 210 | 484 | 485.47 |
49 | 576 | 578.45 | 130 | 508 | 511.99 | 211 | 484 | 485.08 |
50 | 576 | 578.09 | 131 | 508 | 511.18 | 212 | 483 | 484.67 |
51 | 575 | 577.72 | 132 | 507 | 510.38 | 213 | 483 | 484.23 |
52 | 575 | 577.34 | 133 | 506 | 509.60 | 214 | 483 | 483.76 |
53 | 575 | 576.93 | 134 | 506 | 508.83 | 215 | 482 | 483.25 |
54 | 574 | 576.52 | 135 | 505 | 508.07 | 216 | 482 | 482.72 |
55 | 574 | 576.09 | 136 | 505 | 507.34 | 217 | 481 | 482.16 |
56 | 573 | 575.64 | 137 | 504 | 506.61 | 218 | 481 | 481.56 |
57 | 573 | 575.18 | 138 | 504 | 505.91 | 219 | 480 | 480.93 |
58 | 572 | 574.70 | 139 | 503 | 505.22 | 220 | 480 | 480.26 |
59 | 572 | 574.20 | 140 | 503 | 504.54 | 221 | 479 | 479.56 |
60 | 572 | 573.69 | 141 | 503 | 503.89 | 222 | 479 | 478.82 |
61 | 571 | 573.16 | 142 | 502 | 503.25 | 223 | 478 | 478.04 |
62 | 571 | 572.61 | 143 | 502 | 502.62 | 224 | 478 | 477.21 |
63 | 570 | 572.04 | 144 | 501 | 502.02 | 225 | 477 | 476.35 |
64 | 570 | 571.46 | 145 | 501 | 501.43 | 226 | 476 | 475.44 |
65 | 569 | 570.86 | 146 | 501 | 500.86 | 227 | 476 | 474.49 |
66 | 569 | 570.24 | 147 | 500 | 500.30 | 228 | 475 | 473.49 |
67 | 568 | 569.61 | 148 | 500 | 499.76 | 229 | 474 | 472.45 |
68 | 568 | 568.95 | 149 | 500 | 499.24 | 230 | 473 | 471.36 |
69 | 567 | 568.28 | 150 | 499 | 498.74 | 231 | 472 | 470.22 |
70 | 567 | 567.60 | 151 | 499 | 498.25 | 232 | 471 | 469.03 |
71 | 566 | 566.89 | 152 | 499 | 497.78 | 233 | 470 | 467.79 |
72 | 566 | 566.17 | 153 | 498 | 497.33 | 234 | 468 | 466.49 |
73 | 565 | 565.43 | 154 | 498 | 496.89 | 235 | 467 | 465.15 |
74 | 565 | 564.68 | 155 | 498 | 496.48 | 236 | 465 | 463.74 |
75 | 564 | 563.91 | 156 | 498 | 496.07 | 237 | 463 | 462.29 |
76 | 564 | 563.12 | 157 | 497 | 495.69 | 238 | 460 | 460.77 |
77 | 563 | 562.32 | 158 | 497 | 495.32 | 239 | 457 | 459.20 |
78 | 563 | 561.51 | 159 | 497 | 494.96 | 240 | 453 | 457.57 |
79 | 562 | 560.68 | 160 | 496 | 494.62 | |||
80 | 561 | 559.83 | 161 | 496 | 494.30 |
Vapour | Predicted Wavelength (nm) | Original Wavelength (nm) | Error Percentage |
---|---|---|---|
Sodium | 588.73231 | 589 | 0.04% |
Neon | 588.14 | 588.2 | 0.01% |
Copper | 572.38412 | 578.2 | 1% |
Mercury | 566.5212 | 546.074 | 3.7% |
Helium | 587.97620 | 587.562 | 0.07% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patra, A.; Kumari, K.; Barua, A.; Pradhan, S. Advancing Visible Spectroscopy through Integrated Machine Learning and Image Processing Techniques. Appl. Sci. 2024, 14, 4527. https://doi.org/10.3390/app14114527
Patra A, Kumari K, Barua A, Pradhan S. Advancing Visible Spectroscopy through Integrated Machine Learning and Image Processing Techniques. Applied Sciences. 2024; 14(11):4527. https://doi.org/10.3390/app14114527
Chicago/Turabian StylePatra, Aman, Kanchan Kumari, Abhishek Barua, and Swastik Pradhan. 2024. "Advancing Visible Spectroscopy through Integrated Machine Learning and Image Processing Techniques" Applied Sciences 14, no. 11: 4527. https://doi.org/10.3390/app14114527
APA StylePatra, A., Kumari, K., Barua, A., & Pradhan, S. (2024). Advancing Visible Spectroscopy through Integrated Machine Learning and Image Processing Techniques. Applied Sciences, 14(11), 4527. https://doi.org/10.3390/app14114527