Assessing the Feasibility of Removing Graffiti from Railway Vehicles Using Ultra-Freezing Air Projection
Abstract
:Featured Application
Abstract
1. Introduction
- Ethylene glycol ethers: May affect reproductive functions and the respiratory system. Penetrate through the skin.
- Limonene: May cause eye irritation and alteration of the respiratory tract. Dermal disorders.
- Methyl ethyl ketone (MEK): may cause headaches, eye irritation, respiratory impairment and may impair cognitive functions, e.g., causing a loss of balance.
- Methylene chloride: This is an irritant carcinogen that may cause eye irritation, impaired respiratory tract and cognitive functions, such as loss of balance. Prolonged exposure may cause liver and kidney damage or changes in the blood’s ability to carry oxygen.
- N-methylpyrrolidone (NMP): This is a carcinogen that may affect reproductive functions. Skin effects are swelling, blistering and burning.
- Toluene: This is an irritant to the eyes, respiratory system and dermis. May cause headaches and cognitive impairment.
- To evaluate the low-temperature resistance of materials used in transport vehicles through experimental laboratory tests.
- To adapt the deep-freezing equipment for experimental tests in the laboratory.
- To analyse and discuss the data obtained in the experimental tests, assessing the feasibility of the project of using deep-freezing equipment for removing graffiti from railway vehicles. This will consider technical, economic, and environmental aspects, and propose improvements and solutions to the problems identified.
2. Materials and Methods
2.1. Support and Selected Graffiti
Physical and Chemical Characteristics of the Aerosols
2.2. Experimental Procedure
2.3. Methods of Analysis and Recording of Results
2.3.1. Analysis by Microscopy
2.3.2. Adhesion Analysis
2.3.3. Colourimetric Analysis
3. Results
3.1. Deep-Freezing Conditions Obtained
3.2. Microscopy
3.3. Adhesion
3.4. Colourimetry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | Climatic chamber |
EC | Electric compressor |
GWP | Global warming potential |
IC | Intercooler |
ODP | Ozone depletion potential |
RBC | Reverse Brayton cycle |
REG | Regenerator |
T | Turbine |
TCC | Turbocharger compressor |
References
- Sánchez, M. Acercamiento a la evolución histórica y tecnológica de los materiales pictóricos. In ARTE URBANO. Conservación y Restauración de Intervenciones Contemporáneas; Ge-IIC: Madrid, Spain, 2016; Volume 10, pp. 146–159. [Google Scholar] [CrossRef]
- Halsey, M.; Young, A. “Our desires are ungovernable” Writing graffiti in urban space. Theor. Criminol. 2006, 10, 275–306. [Google Scholar] [CrossRef]
- Thompson, K.; Offler, N.; Hirsch, L.; Every, D.; Thomas, M.J.; Dawson, D. From broken windows to a renovated research agenda: A review of the literature on vandalism and graffiti in the rail industry. Transp. Res. Part A Policy Pract. 2012, 46, 1280–1290. [Google Scholar] [CrossRef]
- Teng, H.H.; Puli, A.; Qi, Y.G. Identification of Influencing Factors of Graffiti Occurrence at Nevada State Highway Bridges and Soundwalls. J. Infrastruct. Syst. 2017, 23, 05017003. [Google Scholar] [CrossRef]
- Moura, A.R.; Flores-Colen, I.; de Brito, J. Analysis of graffiti removal techniques and anti-graffiti products for porous materials. In Proceedings of the Hydrophobe VII—7th International Conference on Water Repellent Treatment and Protective Surface Technology for Building Materials, Lisbon, Portugal, 11–12 September 2014. [Google Scholar] [CrossRef]
- Roviello, V.; Gilhen-Baker, M.; Roviello, G.N. Graffiti Paint on Urban Trees: A Review of Removal Procedures and Ecological and Human Health Considerations. Sustainability 2023, 15, 4022. [Google Scholar] [CrossRef]
- Kelling, G.L.; Wilson, J.Q. Broken Windows. Atl. Mon. 1982, 249, 29–38. Available online: http://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/1 (accessed on 20 February 2024).
- Haworth, B.; Bruce, E.; Iveson, K. Spatio-temporal analysis of graffiti occurrence in an inner-city urban environment. Appl. Geogr. 2013, 38, 53–63. [Google Scholar] [CrossRef]
- Fernandes, C.; Batel, S. The right to stay: Exploring graffiti and street art as political representations against touristification in Lisbon. Pap. Soc. Represent. 2023, 32, 2.1–2.26. Available online: https://psr.iscte-iul.pt/index.php/PSR/article/view/678 (accessed on 19 February 2024).
- Huntington, D. Sustainable Grafiti Management Solutions for Public Areas. SAUC-Str. Art. Urban Creat. 2018, 4, 46–74. [Google Scholar]
- McAuliffe, C. Legal Walls and Professional Paths: The Mobilities of Graffiti Writers in Sydney. Urban Stud. 2013, 50, 518–537. [Google Scholar] [CrossRef]
- Sanmartín, P.; Bosch-Roig, P. Biocleaning to Remove Graffiti: A Real Possibility? Advances towards a Complete Protocol of Action. Coatings 2019, 9, 104. [Google Scholar] [CrossRef]
- Graffiti Costs UK Over £100 Million Every Year. Marketers Media Newsroom. Available online: https://news.marketersmedia.com/graffiti-costs-uk-over-100-million-every-year/88901842 (accessed on 6 February 2024).
- Medina, F. El Coste de Limpiar los Grafitis se Dispara en Madrid: Más de 10.000 Euros al Día. El Mundo. Available online: https://www.elmundo.es/madrid/2019/09/01/5d6a92fafc6c83ee4c8b4571.html (accessed on 13 February 2024).
- Killen, A.; Coxon, S.; Napper, R. A Review of the Literature on Mitigation Strategies for Vandalism in Rail Environments. In Proceedings of the 39th Australasian Transport Research Forum (ATRF), Auckland, New Zealand, 27–29 November 2017. [Google Scholar]
- Havârneanu, G.M. Behavioral and organizational interventions to prevent trespass and graffiti vandalism on railway property. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2017, 231, 1078–1087. [Google Scholar] [CrossRef]
- Uzzell, D.; Brown, J. Conceptual Progress in Understanding Fear of Crime in Railway Stations. Psicologia 2007, 21, 119–137. [Google Scholar] [CrossRef]
- Enever, P. Cutting graffiti costs through Queensland Rail prevention and management. In Proceedings of the AusRAIL PLUS 2013, Driving the Costs out of Rail, Canberra, ACT, Australia, 26–28 November 2013. [Google Scholar]
- Rodríguez, J. Entre 15 y 25 Millones de Euros Anuales: El Coste de los Grafitis en los Trenes de Renfe. El Confidencial. Available online: https://www.elconfidencial.com/espana/2019-02-21/juicios-grafiteros-trenes-renfe-aumentaron_1839774/ (accessed on 6 February 2024).
- Renfe Gasta 25 Millones de Euros al Año en Evitar y Limpiar Grafitis en Sus Trenes. Europa Press. Available online: https://www.europapress.es/economia/noticia-renfe-gasta-25-millones-euros-ano-evitar-limpiar-grafitis-trenes-20181116140347.html (accessed on 6 February 2024).
- Rovira, M. Los Grafitis en los Trenes en Cataluña Cuestan 6.5 Millones de Euros a Renfe. EL PAÍS. Available online: https://elpais.com/espana/catalunya/2021-01-19/los-grafitis-en-los-trenes-cuestan-65-millones-de-euros-a-renfe.html (accessed on 18 July 2023).
- Morales, E. Renfe Adjudica un Macrocontrato de Más de 400 Millones Para Limpiar Estaciones y Grafitis. The Objective Media S.L. Available online: https://theobjective.com/economia/2023-01-07/renfe-contrato-millones-grafitis-celse-acciona/ (accessed on 18 July 2023).
- Removing Graffiti from Trains Cost SNCB €6 Million in 2020. The Brussels Times. Available online: https://www.brusselstimes.com/177167/removing-graffiti-from-trains-cost-sncb-e6-million-in-2020 (accessed on 6 February 2024).
- Wighton, D. Graffiti en Trenes: Cómo Aborda ALEMANIA su Problema de 38 Millones de Euros. The Local de. Available online: https://www-thelocal-de.translate.goog/20190510/train-graffiti-how-germany-is-tackling-its-38-million-problem?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc (accessed on 6 February 2024).
- Jardim, V. Graffiti Criminals Costing $30 m, Delaying Commuters—And Risking Death. 9 News. Available online: https://www.9news.com.au/national/graffiti-criminals-sydney-trains-cost-delays-death-and-injuries/849054e6-9287-45ef-b78f-f6985130df56 (accessed on 6 February 2024).
- Marcin, G.; Paweł, K. Effectiveness of Anti-Graffiti Coatings used in Rolling Stock. Terotechnology XI Mater. Res. Forum LLC Mater. Res. Proc. 2020, 17, 233–239. [Google Scholar] [CrossRef]
- TeleMadrid. Así se Limpian los Grafitis de los Trenes de Cercanías de Madrid. Available online: https://www.telemadrid.es/programas/telenoticias-1/limpian-grafitis-cuestan-RENFE-millones-2-2097110309--20190221030903.html (accessed on 6 February 2024).
- Anundi, H.; Langworth, S.; Johanson, G.; Lind, M.-L.; Åkesson, B.; Friis, L.; Itkes, N.; Soderman, E.; Jönsson, B.A.G.; Edling, C. Air and biological monitoring of solvent exposure during graffiti removal. Int. Arch. Occup. Environ. Health 2000, 73, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Langworth, S.; Anundi, H.; Friis, L.; Johanson, G.; Lind, M.-L.; Söderman, E.; Åkesson, B.A. Acute health effects common during graffiti removal. Int. Arch. Occup. Environ. Health 2001, 74, 213–218. [Google Scholar] [CrossRef]
- Instituto Nacional de Seguridad y Salud en el Trabajo. ICSC 0360-HIDRÓXIDO DE SODIO. 2018. Available online: https://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0360&p_lang=es (accessed on 28 February 2024).
- Teng, H.; Puli, A.; Kutela, B.; Ni, Y.; Hu, B. Cost and Benefit Evaluation of Graffiti Countermeasures on the Nevada Highways. J. Transp. Technol. 2016, 6, 360–377. [Google Scholar] [CrossRef]
- García García, M.; González Arrieta, M.A.; Rodríguez González, S.; Márquez-Sánchez, S.; Da Silva Ramos, C.F. Graffiti Identification System Using Low-Cost Sensors. Int. J. Interact. Multimed. Artif. Intell. 2023, in press. [CrossRef]
- Willcocks, M.; Malpass, M.; Toylan, G. D2.1 Graffiti Vandalism in Public Areas and Transport Report and Categorisation Model. 2015. Available online: http://project.graffolution.eu (accessed on 19 February 2024).
- Rossi, S.; Fedel, M.; Petrolli, S.; Deflorian, F. Behaviour of different removers on permanent anti-graffiti organic coatings. J. Build. Eng. 2016, 5, 104–113. [Google Scholar] [CrossRef]
- Amrutkar, S.; More, A.; Mestry, S.; Mhaske, S.T. Recent developments in the anti-graffiti coatings: An attentive review. J. Coat. Technol. Res. 2022, 19, 717–739. [Google Scholar] [CrossRef]
- Rossi, S.; Fedel, M.; Petrolli, S.; Deflorian, F. Characterization of the Anti-Graffiti Properties of Powder Organic Coatings Applied in Train Field. Coatings 2017, 7, 67. [Google Scholar] [CrossRef]
- Milescu, R.A.; Farmer, T.J.; Sherwood, J.; McElroy, C.R.; Clark, J.H. CyreneTM, a Sustainable Solution for Graffiti Paint Removal. Sustain. Chem. 2023, 4, 154–170. [Google Scholar] [CrossRef]
- Quann, J. Irish Rail Looking at Innovative Ways to Remove Graffiti. News Talk. Available online: https://www.newstalk.com/news/irish-rail-looking-at-innovate-ways-to-remove-graffiti-1163975 (accessed on 6 February 2024).
- Renfe. “¿Cuánto Tiempo Crees Que Lleva Limpiar un Tren de Grafitis? #LaObraMásCara”. Available online: https://twitter.com/renfe/status/1101421890835566592 (accessed on 6 February 2024).
- Esto nos Cuestan los Grafitis: 6.5 Millones en 2020 Para Limpiar Pintadas en Rodalies. Metrópoli Abierta-El Español. Available online: https://metropoliabierta.elespanol.com/informacion-municipal/20210119/esto-nos-cuestan-los-grafitis-millones-en-para-limpiar-pintadas-rodalies/552444952_0.html (accessed on 6 February 2024).
- Vega, A.; Santamarina, V.; Colomina, A.; Carabal, M.A. Cryogenics as an advanced method of cleaning cultural heritage. Challenges and solutions. Sustainability 2021, 13, 1052. [Google Scholar]
- Kohli, R. Applications of dry vapor steam cleaning technique for removal of surface contaminants. In Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques; Elsevier: Amsterdam, The Netherlands, 2018; Volume 11, pp. 681–702. [Google Scholar] [CrossRef]
- Kohli, R. Applications of Solid Carbon Dioxide (Dry Ice) Pellet Blasting for Removal of Surface Contaminants. In Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques; Elsevier: Amsterdam, The Netherlands, 2019; Volume 11, pp. 117–169. [Google Scholar] [CrossRef]
- Spur, G.; Uhlmann, E.; Elbing, F. Dry-ice blasting for cleaning: Process, optimization and application. Wear 1999, 233, 402–411. [Google Scholar] [CrossRef]
- Dzido, A.; Krawczyk, P. Abrasive Technologies with Dry Ice as a Blasting Medium. Energies 2023, 16, 1014. [Google Scholar] [CrossRef]
- Máša, V.; Horňák, D.; Petrilák, D. Industrial use of dry ice blasting in surface cleaning. J. Clean. Prod. 2021, 329. [Google Scholar] [CrossRef]
- Krier, P.; White, B.T.; Ferriday, P.; Watson, M.; Buckley-Johnstone, L.; Lewis, R.; Lanigan, J.L. Vehicle-based cryogenic rail cleaning: An alternative solution to “leaves on the line”. Proc. Inst. Civ. Eng. Civ. Eng. 2021, 174, 176–182. [Google Scholar] [CrossRef]
- Mašková, L.; SmolÍK, J.; Vávrová, P.; Neoralová, J.; Součková, M.; Novotná, D.; Jandová, V.; Ondráček, J.; Ondráčková, L.; Křížová, T.; et al. Carbon dioxide snow cleaning of paper. Herit. Sci. 2021, 9, 145. [Google Scholar] [CrossRef]
- Onofre, A.; Godina, R.; Carvalho, H.; Catarino, I. Eco-innovation in the cleaning process: An application of dry ice blasting in automotive painting industry. J. Clean Prod. 2020, 272, 122987. [Google Scholar] [CrossRef]
- Millman, L.R.; Giancaspro, J.W. Environmental Evaluation of Abrasive Blasting with Sand, Water, and Dry Ice. Int. J. Arch. Eng. Constr. 2012, 1, 174–182. [Google Scholar] [CrossRef]
- Suárez Koch, J.J. Estudio de Prefactibilidad Para La Instalación de Un Servicio de Limpieza Criogénica Con Hielo Seco Para El Sector de Generación de Energía Eléctrica. Universidad de Lima. 2020. Available online: https://repositorio.ulima.edu.pe/bitstream/handle/20.500.12724/11574/Su%c3%a1rez_Koch_Jimena_Josceline.pdf?sequence=1&isAllowed=y (accessed on 29 July 2022).
- Desantes, J.M.; Benajes, J.V.; Broatch, J.A.; Galindo, L.J.; Serrano, C.J.R.; Olmeda, G.P.C.; Dolz, R.V.; Fernandez, B.M. ES2747856 (A1). Espacenet. Available online: https://lp.espacenet.com/publicationDetails/biblio?DB=lp.espacenet.com&II=0&ND=3&adjacent=true&locale=es_LP&FT=D&date=20200311&CC=ES&NR=2747856A1&KC=A1 (accessed on 27 October 2022).
- Desantes, J.M.; Benajes, J.V.; Broatch, J.A.; Galindo, L.J.; Serrano, C.J.R.; Olmeda, G.P.C.; Dolz, R.V.; Fernandez, B.M. WO2021123484 (A1). Espacenet. Available online: https://lp.espacenet.com/publicationDetails/originalDocument?FT=D&date=20210624&DB=lp.espacenet.com&locale=es_LP&CC=WO&NR=2021123469A1&KC=A1&ND=4 (accessed on 11 April 2024).
- Serrano, J.R.; Dolz, V.; Ponce-Mora, A.; López-Carrillo, J.A. Experimental Assessment of a Reverse Brayton Cycle Based on Automotive Turbochargers and E-Chargers for Cryogenic Applications. J. Eng. Gas Turbines Power 2023, 145, 021029. [Google Scholar] [CrossRef]
- Marazioti, V.; Douvas, A.M.; Katsaros, F.; Koralli, P.; Chochos, C.; Gregoriou, V.G.; Boyatzis, S.; Facorellis, Y. Chemical characterisation of artists’ spray-paints: A diagnostic tool for urban art conservation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 291, 122375. [Google Scholar] [CrossRef] [PubMed]
- Pellis, G.; Bertasa, M.; Ricci, C.; Scarcella, A.; Croveri, P.; Poli, T.; Scalarone, D. A multi-analytical approach for precise identification of alkyd spray paints and for a better understanding of their ageing behaviour in graffiti and urban artworks. J. Anal. Appl. Pyrolysis 2022, 165, 105576. [Google Scholar] [CrossRef]
- Montana Colors, S.L. MTN 94. 2023. Available online: https://www.montanacolors.com/downloads/TDS_MTN_94_EN_23.pdf (accessed on 23 February 2024).
- Montana Colors, S.L. Hardcore. 2020. Available online: https://www.montanacolors.com/downloads/TDS_MTN_Hardcore_EN.pdf (accessed on 23 February 2024).
- Montana Colors, S.L. WATER BASED. 2020. Available online: https://www.montanacolors.com/downloads/TDS_MTN_WaterBased_400_EN.pdf (accessed on 23 February 2024).
- Montana-Cans. MONTANA TARBLACK 600 ML. Available online: www.montana-cans.com/en/spray-cans/montana-spray-paint/black-50ml-600ml-graffiti-paint/montana-tarblack-600ml (accessed on 16 February 2024).
- Montana Colors, S.L. Nitro 2G Negro. Available online: https://www.montanacolors.com/downloads/TDS_MTN_Nitro%202G_ES.pdf (accessed on 23 February 2024).
- Neurtek Instruments. Corte Enrejado. Ensayo de Adherencia. 2023. Available online: https://www.neurtek.com/descargas/neurtek_corte_enrejado_es.pdf (accessed on 11 April 2024).
- ISO 2409:2020; Paints and Varnishes—Cross-Cut Test. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/76041.html (accessed on 18 July 2023).
- Tesa®. Tesa® 4024. Poliolefina High Tack. 2024. Available online: https://www.tesa.com/es-es/industria/tesa-4024-poliolefina-high-tack.html (accessed on 11 April 2024).
- AENOR. UNE-EN 15886 Conservación del Patrimonio Cultural. Métodos de Ensayo. Medición del Color de Superficies. 2010. Available online: www.aenor.es (accessed on 23 February 2024).
- Konica Minolta, Inc. Espectrofotómetro CM-2600d/2500d. 2014. Available online: https://www.konicaminolta.com/instruments/download/instruction_manual/color/pdf/cm-2600d-2500d_instruction_spa.pdf (accessed on 11 April 2024).
- Hardeberg, J.Y. Acquisition and Reproduction of Color Images: Colorimetric and Multispectral; Dissertation.com: Irvine, CA, USA, 2001. [Google Scholar]
Code | Manufacturer | Type | Colour | Gloss 60° | Dry Film Thickness | Accession | Medium | Solvent | Opacity | UV Resistance |
---|---|---|---|---|---|---|---|---|---|---|
1_MTN_94_R 2_MTN_94_R | MTN | MTN 94 | RV 3001 Vivid Red EX014H3001 | 15–25% matte | 15–20 μ/layer | 0 B | Modified Alkyd | Aromatic mixture | 5 of 5 | 2 of 3 |
3_MTN_WB_R 4_MTN_WB_R | MTN | Water-based | NAPHTHOL RED—PW6-PR170-PO34-PY74-PY42 RV 3020 Light Red EX019W3020M | <10% matte | 15–20 μ/layer | 0 B | Modified Polyurethane | Water and alcohols | 4 of 5 | 2 of 3 |
5_MTN_94_V 6_MTN_94_V | MTN | MTN 94 | RV 6018 Valley Green EX014H6018 | 15–25% matte | 15–20 μ/layer | 0 B | Modified Alkyd | Aromatic mixture | 5 of 5 | 3 of 3 |
7_MTN_WB_V 8_MTN_WB_V | MTN | Water-based | BRILLIANT GREEN—PW6-PY74-PG7-PR122 RV 6018 Valley Green EX019W6018M | <10% matte | 15–20 μ/layer | 0 B | Modified Polyurethane | Water and alcohols | 5 of 5 | 2 of 3 |
9_MTN_94_A 10_MTN_94_A | MTN | MTN 94 | RV 30 Electric Blue EX014H0030 | 15–25% matte | 15–20 μ/layer | 0 B | Modified Alkyd | Aromatic mixture | 5 of 5 | 3 of 3 |
11_MTN_WB_A 12_MTN_WB_A | MTN | Water-based | COBALT BLUE—PW6-PB153-PB29-PY74-PR122 RV 68 Hope Blue EX019W0068M | <10% matte | 15–20 μ/layer | 0 B | Modified Polyurethane | Water and alcohols | 5 of 5 | 3 of 3 |
13_MTN_94_M 14_MTN_94_M | MTN | MTN 94 | RV 175 Electra Violet EX0140175MRV | 15–25% matte | 15–20 μ/layer | 0 B | Modified Alkyd | Aromatic mixture | 5 of 5 | 3 of 3 |
15_MTN_WB_P 16_MTN_WB_P | MTN | Water-based | DIOXAZINE PURPLE—PW6-PV23-PBK7-PG7-PB153 RV 173 Ultraviolet EX019W0173M | <10% matte | 15–20 μ/layer | 0 B | Modified Polyurethane | Water and alcohols | 5 of 5 | 3 of 3 |
17_MTN_94_N 18_MTN_94_N | MTN | MTN 94 | Matte Black EX014H0901 | 15–25% matte | 15–20 μ/layer | 0 B | Modified Alkyd | Aromatic mixture | 5 of 5 | 3 of 3 |
19_MTN_WB_N 20_MTN_WB_N | MTN | Water-based | CARBON BLACK—PBK7 R 9011 Black EX019W9011M | <10% matte | 15–20 μ/layer | 0 B | Modified Polyurethane | Water and alcohols | 5 of 5 | 3 of 3 |
21_MTN_N2G_N 22_MTN_N2G_N | MTN | NITRO 2G | NITRO 2G Black. Solid colour. Matte Paint. | <10% | 20 μ/layer | 3 B | Acrylic | Butyl Acetate | 5 of 5 | 3 of 3 |
23_MTN_T 24_MTN_T | Montana | Tarblack | Black Tarblack | Matte | - | - | Bitumen-base | - | 5 of 5 | 3 of 3 |
25_MTN_HP 26_MTN_HP | MTN | Hardcore | Silver EX014H0101 | 60–85% glossy <20% matte | 15–20 μ/layer | 0 B | Modified Alkyd | Aromatic mixture | 5 of 5 | 1 of 3 |
27_PC5M_N | POSCA | Marker PC5M | Black | - | - | - | - | Water and alcohols | 5 of 5 | 3 of 3 |
Air Temperature | Jet Pressure | Exposure Time | Shot Distance |
---|---|---|---|
−80 °C | 3 bar | 30″/1′/2′/4′/6′/8′/++ | 0.5 cm |
Classification | Description | Cross-Cut Area Affected | Appearance |
---|---|---|---|
0 | Clean cuts without detachment. | 0% | |
1 | Small losses at intersections. | <5% | |
2 | Detachment at edges and intersections. | 5–15% | |
3 | Loss of partial coating in strips. Total or partial absence in several squares. | 15–35% | |
4 | Total separation of the stratum in some squares. Wide bands around the cuts. | 35–65% | |
5 | Any loss in excess of that described in Classification 4. | >65% | - |
Code | Nozzle Temperature (°C) | T Surface (°C) | Pressure (bar) | Time | Distance (cm) |
---|---|---|---|---|---|
COA1 | −85 | −80 | 2.95 | 30″ | 0.5 |
COA1 | −85 | −80 | 2.95 | 1′ | 0.5 |
COA1 | −85 | −80 | 2.95 | 2′ | 0.5 |
COA1 | −80 | −75 | 2.95 | 4′ | 0.5 |
COA1 | −80 | −75 | 2.95 | 6′ | 0.5 |
COA1 | −80 | −75 | 2.95 | 8′ | 0.5 |
Code | Nozzle Temperature (°C) | T Surface (°C) | Pressure (bar) | Time (min) | Distance (cm) |
---|---|---|---|---|---|
17_MTN_94_N 18_MTN_94_N | −83 | −78 | 3.08 | 8 | 0.5 |
19_MTN_WB_N 20_MTN_WB_N | −86 | −81 | 3.05 | 8 | 0.5 |
21_MTN_N2G_N 22_MTN_N2G_N | −83 | −78 | 3.07 | 8 | 0.5 |
23_MTN_T 24_MTN_T | −82 | −77 | 3.07 | 8 | 0.5 |
5_MTN_94_V 6_MTN_94_V | −83 | −78 | 2.88 | 8 | 0.5 |
7_MTN_WB_V 8_MTN_WB_V | −84 | −79 | 2.9 | 8 | 0.5 |
13_MTN_94_M 14_MTN_94_M | −84 | −79 | 2.86 | 8 | 0.5 |
15_MTN_WB_P 16_MTN_WB_P | −83 | −78 | 3 | 8 | 0.5 |
1_MTN_94_R 2_MTN_94_R | −82 | −77 | 2.82 | 8 | 0.5 |
3_MTN_W_R 4_MTN_WB_R | −83 | −78 | 2.85 | 8 | 0.5 |
9_MTN_94_A 10_MTN_94_A | −82 | −77 | 2.92 | 8 | 0.5 |
11_MTN_WB_A 12_MTN_WB_A | −85 | −80 | 2.94 | 8 | 0.5 |
25_MTN_HP 26_MTN_HP | −85 | −80 | 3.1 | 8 | 0.5 |
23_MTN_T 24_MTN_T | −80 | −75 | 3 | ++ | 0.5 |
Code | Cutting Tool | Classification * (Before) | % | Classification (After) | % |
---|---|---|---|---|---|
COA1 | 2a | 0 | 0% | 1 | <5% |
MTN_94_N | 2a | 1 | <5% | 1 | <5% |
MTN_WB_N | 2a | 1 | <5% | 1 | <5% |
MTN_N2G_N | 2a | 2 | 5–15% | 3 | 15–35% |
M_T | 2a | 1 | <5% | 1 | <5% |
MTN_94_V | 2a | 2 | 5–15% | 2 | 5–15% |
MTN_WB_V | 2a | 1 | <5% | 1 | <5% |
MTN_94_M | 2a | 1 | <5% | 2 | 5–15% |
MTN_WB_M | 2a | 1 | <5% | 1 | <5% |
MTN_94_R | 2a | 0 | 0% | 0 | 0% |
MTN_WB_R | 2a | 0 | 0% | 0 | 0% |
MTN_94_A | 2a | 1 | <5% | 1 | <5% |
MTN_WB_A | 2a | 1 | <5% | 1 | <5% |
MTN_HP | 2a | 0 | 0% | 0 | 0% |
M_T | 2a | 1 | <5% | 5 | >65–100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Bosch, A.; Santamarina-Campos, V.; Bosch-Roig, P.; López-Carrillo, J.A.; Dolz-Ruiz, V.; Sánchez-Pons, M. Assessing the Feasibility of Removing Graffiti from Railway Vehicles Using Ultra-Freezing Air Projection. Appl. Sci. 2024, 14, 4165. https://doi.org/10.3390/app14104165
Vega-Bosch A, Santamarina-Campos V, Bosch-Roig P, López-Carrillo JA, Dolz-Ruiz V, Sánchez-Pons M. Assessing the Feasibility of Removing Graffiti from Railway Vehicles Using Ultra-Freezing Air Projection. Applied Sciences. 2024; 14(10):4165. https://doi.org/10.3390/app14104165
Chicago/Turabian StyleVega-Bosch, Aina, Virginia Santamarina-Campos, Pilar Bosch-Roig, Juan Antonio López-Carrillo, Vicente Dolz-Ruiz, and Mercedes Sánchez-Pons. 2024. "Assessing the Feasibility of Removing Graffiti from Railway Vehicles Using Ultra-Freezing Air Projection" Applied Sciences 14, no. 10: 4165. https://doi.org/10.3390/app14104165
APA StyleVega-Bosch, A., Santamarina-Campos, V., Bosch-Roig, P., López-Carrillo, J. A., Dolz-Ruiz, V., & Sánchez-Pons, M. (2024). Assessing the Feasibility of Removing Graffiti from Railway Vehicles Using Ultra-Freezing Air Projection. Applied Sciences, 14(10), 4165. https://doi.org/10.3390/app14104165