A Construction Method for a Dynamic Weighted Protein Network Using Multi-Level Embedding
Abstract
:1. Introduction
2. Dynamic Weighted Protein Network Construction
- Adjacency matrix construction. Firstly, the protein activity cycles are computed using a dynamic threshold function. Then, the interactions between different proteins are measured by the connection probability (CP), and if it exceeds the threshold, an edge is added. Finally, the resulting collection of protein subnetworks at different time points is represented by the adjacency matrices .
- Feature matrix construction. After the first step is completed and the adjacency matrices composed of multiple protein subnetworks are obtained, each protein within the subnetworks is annotated using GO Slim information, followed by conducting one-hot encoding. This process constructs multiple feature matrices that represent the GO Slim annotations of the protein subnetworks.
- Dynamic weighted network generation by multi-level embedding. Each adjacency and feature matrix is input into VGAE for the first embedding. After learning the low-dimensional representations of the nodes, a node attribute matrix collection is generated to represent the node attribute information in each protein subnetwork. Then, each attribute and adjacency matrix are input into DNAE for the second embedding, generating multiple low-dimensional embeddings . These embeddings are concatenated in series to construct a weighted PPIN by cosine similarity.
2.1. Construction of the Adjacency Matrix
2.1.1. Active Period Calculation
2.1.2. Protein Subnetwork Construction
2.2. Construction of the Feature Matrix
2.3. Multi-Level Embedding Method Construction
2.3.1. Variational Graph Auto-Encoders
2.3.2. Deep Attributed Network Embedding
Algorithm 1 Dynamic Weighted Protein Network Construction (DWPNMLE) |
Input: PPI data; Gene expression data; Threshold ; GO Slim information Output: Dynamic weighted protein network
|
3. Experiments and Results
3.1. Materials
3.2. Evaluation Metrics
3.3. Performance Comparison
3.3.1. Comparison with Other Methods
3.3.2. Robustness Analysis
3.3.3. Methods Efficiency Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Coulombe-Huntington, J.; Kang, S.; Sheynkman, G.M.; Hao, T.; Richardson, A.; Sun, S.; Yang, F.; Shen, Y.A.; Murray, R.R.; et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 2016, 164, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Legrain, P.; Wojcik, J.; Gauthier, J.-M. Protein–protein interaction maps: A lead towards cellular functions. Trends Genet. 2001, 17, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Guna, A.; Volkmar, N.; Christianson, J.C.; Hegde, R.S. The er membrane protein complex is a transmembrane domain insertase. Science 2018, 359, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Dooling, L.J.; Tirrell, D.A. Engineering the dynamic properties of protein networks through sequence variation. ACS Cent. Sci. 2016, 2, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Chiba, T.; Ozawa, R.; Yoshida, M.; Hattori, M.; Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 2001, 98, 4569–4574. [Google Scholar] [CrossRef] [PubMed]
- Gavin, A.; Bösche, M.; Krause, R.; Grandi, P.; Marzioch, M.; Bauer, A.; Schultz, J.; Rick, J.M.; Michon, A.; Cruciat, C.-M.; et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Xenarios, I.; Salwinski, L.; Duan, X.J.; Higney, P.; Kim, S.-M.; Eisenberg, D. Dip, the database of interacting proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002, 30, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Mrowka, R.; Patzak, A.; Herzel, H. Is there a bias in proteome research? Genome Res. 2001, 11, 1971–1973. [Google Scholar] [CrossRef] [PubMed]
- Cinaglia, P.; Cannataro, M. Network alignment and motif discovery in dynamic networks. Netw. Model. Anal. Health Inform. Bioinform. 2022, 11, 38. [Google Scholar] [CrossRef]
- Li, M.; Ni, P.; Chen, X.; Wang, J.; Wu, F.-X.; Pan, Y. Construction of refined protein interaction network for predicting essential proteins. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 16, 1386–1397. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Meng, X.; Zheng, R.; Wu, F.-X.; Li, Y.; Pan, Y.; Wang, J. Identification of protein complexes by using a spatial and temporal active protein interaction network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 17, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.; Zitnik, M.; Wang, B.; Leskovec, J.; Goldenberg, A.; Sharan, R. To embed or not: Network embedding as a paradigm in computational biology. Front. Genet. 2019, 10, 452819. [Google Scholar] [CrossRef] [PubMed]
- Badkas, A.; Landtsheer, S.D.; Sauter, T. Construction and contextualization approaches for protein–protein interaction networks. Comput. Struct. Biotechnol. J. 2022, 20, 3280–3290. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Parvej, M.M.; Zhang, C.; Guo, S.; Zhang, J. Advances in the development of representation learning and its innovations against COVID-19. COVID 2023, 3, 1389–1415. [Google Scholar] [CrossRef]
- Meng, X.; Xiang, J.; Zheng, R.; Wu, F.; Li, M. Dpcmne: Detecting protein complexes from protein–protein interaction networks via multi-level network embedding. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, M.; Qian, Y. protein2vec: Predicting protein–protein interactions based on lstm. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 19, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Zahiri, J.; Emamjomeh, A.; Bagheri, S.; Ivazeh, A.; Mahdevar, G.; Tehrani, H.S.; Mirzaie, M.; Fakheri, B.A.; Mohammad-Noori, M. Protein complex prediction: A survey. Genomics 2020, 112, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, K.; Zheng, W.; Liu, X.; Zhang, Y.; Zhao, Z.; He, Z. Protein complexes identification based on go attributed network embedding. BMC Bioinform. 2018, 19, 535. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, J.; Pan, X.; Yan, H.; You, Z.-H. Hiscf: Leveraging higher-order structures for clustering analysis in biological networks. Bioinformatics 2021, 37, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.-W.; Hu, L.; You, Z.-H.; Wang, L.; Su, X.-R. Hingrl: Predicting drug–disease associations with graph representation learning on heterogeneous information networks. Brief. Bioinform. 2022, 23, bbab515. [Google Scholar] [CrossRef] [PubMed]
- Rinner, O.; Mueller, L.N.; Hubálek, M.; Müller, M.; Gstaiger, M.; Aebersold, R. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat. Biotechnol. 2007, 25, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.A.; Geva-Zatorsky, N.; Eden, E.; Frenkel-Morgenstern, M.; Issaeva, I.; Sigal, A.; Milo, R.; Cohen-Saidon, C.; Liron, Y.; Kam, Z.; et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 2008, 322, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, J.; Liu, B.; Li, M.; Chen, G.; Pan, Y. A comparison of the functional modules identified from time course and static ppi network data. BMC Bioinform. 2011, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, X.; Li, M.; Pan, Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 2013, 13, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Wang, J.; Peng, X.; Wu, F.-X. Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles. Proteome Sci. 2013, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sun, J.; Shuai, S.C.; Zhao, Q.; Shuai, J. Predicting potential interactions between lncrnas and proteins via combined graph auto-encoder methods. Brief. Bioinform. 2023, 24, bbac527. [Google Scholar] [CrossRef]
- Sun, J.; Pan, L.; Li, B.; Wang, H.; Yang, B.; Li, W. A construction method of dynamic protein interaction networks by using relevant features of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 2790–2801. [Google Scholar] [CrossRef]
- Nepusz, T.; Yu, H.; Paccanaro, A. Detecting overlapping protein complexes in protein–protein interaction networks. Nat. Methods 2012, 9, 471–472. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.; Kwoh, C.-K.; Ng, S.-K. A core-attachment based method to detect protein complexes in ppi networks. BMC Bioinform. 2009, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Vlasblom, J.; Wodak, S.J. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform. 2009, 10, 99. [Google Scholar] [CrossRef]
- Leung, H.C.; Xiang, Q.; Yiu, S.M.; Chin, F.Y. Predicting protein complexes from ppi data: A core-attachment approach. J. Comput. Biol. 2009, 16, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Oughtred, R.; Stark, C.; Breitkreutz, B.-J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.; McAdam, R.; et al. The biogrid interaction database: 2019 update. Nucleic Acids Res. 2019, 47, D529–D541. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Wong, J.; Turner, B.; Cho, E.; Wodak, S.J. Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 2009, 37, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.P.; Kudlicki, A.; Rowicka, M.; McKnight, S.L. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science 2005, 310, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.O. Gene ontology annotations and resources. Nucleic Acids Res. 2012, 41, D530–D535. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.; Singh, H.; Mohamed, E.A. Identifying protein complexes in protein–protein interaction data using graph convolutional network. IEEE Access 2021, 9, 123717–123726. [Google Scholar] [CrossRef]
Datasets | Proteins | Interactions |
---|---|---|
DIP | 4957 | 20,836 |
BioGRID | 5628 | 56,328 |
Recognition Methods | Construction Methods | Precision | Recall |
---|---|---|---|
ClusterONE | ST-APIN | 0.6653 | 0.6422 |
FS-DPIN | 0.6801 | 0.6134 | |
DWPNMLE | 0.7315 | 0.7156 | |
COACH | ST-APIN | 0.5977 | 0.4887 |
FS-DPIN | 0.6300 | 0.6072 | |
DWPNMLE | 0.6834 | 0.6269 | |
MCL | ST-APIN | 0.4905 | 0.4165 |
FS-DPIN | 0.5568 | 0.4580 | |
DWPNMLE | 0.6350 | 0.5613 | |
Core | ST-APIN | 0.5520 | 0.4676 |
FS-DPIN | 0.5903 | 0.5536 | |
DWPNMLE | 0.6498 | 0.6233 |
Recognition Methods | Construction Methods | Precision | Recall |
---|---|---|---|
ClusterONE | ST-APIN | 0.6214 | 0.5633 |
FS-DPIN | 0.6589 | 0.6020 | |
DWPNMLE | 0.6872 | 0.6935 | |
COACH | ST-APIN | 0.5451 | 0.4693 |
FS-DPIN | 0.5587 | 0.4916 | |
DWPNMLE | 0.6421 | 0.6158 | |
MCL | ST-APIN | 0.4357 | 0.4231 |
FS-DPIN | 0.4943 | 0.4311 | |
DWPNMLE | 0.5240 | 0.4991 | |
Core | ST-APIN | 0.4855 | 0.3997 |
FS-DPIN | 0.5223 | 0.4850 | |
DWPNMLE | 0.6010 | 0.5649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Guo, S.; Zhang, C.; Parvej, M.M.; Zhang, J. A Construction Method for a Dynamic Weighted Protein Network Using Multi-Level Embedding. Appl. Sci. 2024, 14, 4090. https://doi.org/10.3390/app14104090
Li P, Guo S, Zhang C, Parvej MM, Zhang J. A Construction Method for a Dynamic Weighted Protein Network Using Multi-Level Embedding. Applied Sciences. 2024; 14(10):4090. https://doi.org/10.3390/app14104090
Chicago/Turabian StyleLi, Peng, Shufang Guo, Chenghao Zhang, Mosharaf Md Parvej, and Jing Zhang. 2024. "A Construction Method for a Dynamic Weighted Protein Network Using Multi-Level Embedding" Applied Sciences 14, no. 10: 4090. https://doi.org/10.3390/app14104090
APA StyleLi, P., Guo, S., Zhang, C., Parvej, M. M., & Zhang, J. (2024). A Construction Method for a Dynamic Weighted Protein Network Using Multi-Level Embedding. Applied Sciences, 14(10), 4090. https://doi.org/10.3390/app14104090