Schedulability Analysis in Fixed-Priority Real-Time Multicore Systems with Contention
Abstract
1. Introduction
Contribution
2. Related Works
3. System Task Model
4. Interference-Aware Schedulability Analysis for Fixed Priorities
4.1. Deadline Monotonic Schedulability Analysis
4.2. Interference-Aware Schedulability Analysis for Deadline Monotonic Scheduling
- Its own computation time.
- The interference it is affected by (if it is a receiving task).
- The computation time of higher-priority tasks allocated to its core. And this, in turn, depends on the interference they are affected by (if they are receiving tasks).
4.2.1. Previous Definitions
| Listing 1. Maximum interference array algorithm. |
|
- : activation of overlaps with activation of .
- : activation of does not overlap with activation of .
4.2.2. Worst-Case Response Time with Interference Considerations
- The task’s computation time: .
- The interference the task is affected by: .
- The computation time of higher-priority tasks allocated to the task’s core and the interference they are affected by:.
Example
5. Evaluation
5.1. Simulations with Synthetic Workload
5.2. Simulations on a Real Platform
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| WCRT | worst-case response time |
| WCET | worst-case execution time |
| DM | Deadline Monotonic |
| WF | Worst Fit |
| FF | First Fit |
| WFDU | Worst-Fit Decreasing Utilization |
| FFDU | First-Fit Decreasing Utilization |
References
- Dasari, D.; Akesson, B.; Nélis, V.; Awan, M.A.; Petters, S.M. Identifying the sources of unpredictability in COTS-based multicore systems. In Proceedings of the 2013 8th IEEE International Symposium on Industrial Embedded Systems (SIES), Porto, Portugal, 19–21 June 2013; pp. 39–48. [Google Scholar] [CrossRef]
- Karuppiah, N. The Impact of Interference due to Resource Contention in Multicore Platform for Safety-critical Avionics Systems. Int. J. Res. Eng. Appl. Manag. (IJREAM) 2016, 2, 39–48. [Google Scholar]
- Kim, H.; de Niz, D.; Andersson, B.; Klein, M.; Mutlu, O.; Rajkumar, R. Bounding memory interference delay in COTS-based multi-core systems. In Proceedings of the 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), St. Louis, MI, USA, 22–24 April 2014; pp. 145–154. [Google Scholar] [CrossRef]
- Aceituno, J.M.; Guasque, A.; Balbastre, P.; Simó, J.; Crespo, A. Hardware resources contention-aware scheduling of hard real-time multiprocessor systems. J. Syst. Archit. 2021, 118, 102223. [Google Scholar] [CrossRef]
- Johnson, D.S. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1973. [Google Scholar]
- Aceituno, J.M.; Guasque, A.; Balbastre, P.; Blanes, F.; Pomante, L. Optimized Scheduling of Periodic Hard Real-Time Multicore Systems. IEEE Access 2023, 11, 30027–30039. [Google Scholar] [CrossRef]
- Oh, Y.; Son, S.H. Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems. Real-Time Syst. 1995, 9, 207–239. [Google Scholar] [CrossRef]
- Coffman, E.G.; Garey, M.R.; Johnson, D.S. Approximation Algorithms for Bin Packing: A Survey. In Approximation Algorithms for NP-Hard Problems; PWS Publishing Co.: Boston, MA, USA, 1996; pp. 46–93. [Google Scholar]
- Guasque, A.; Aceituno, J.M.; Balbastre, P.; Simó, J.; Crespo, A. Schedulability Analysis of Dynamic Priority Real-Time Systems with Contention. J. Supercomput. 2022, 78, 14703–14725. [Google Scholar] [CrossRef]
- Bril, R.; Lukkien, J.; Verhaegh, W. Worst-Case Response Time Analysis of Real-Time Tasks under Fixed-Priority Scheduling with Deferred Preemption Revisited. Real-Time Syst. 2007, 42, 269–279. [Google Scholar]
- Davis, R.I.; Burns, A. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems. ACM Comput. Surv. 2011, 43, 1–44. [Google Scholar] [CrossRef]
- Lugo, T.; Lozano, S.; Fernández, J.; Carretero, J. A Survey of Techniques for Reducing Interference in Real-Time Applications on Multicore Platforms. IEEE Access 2022, 10, 21853–21882. [Google Scholar] [CrossRef]
- Pan, X.; Mueller, F. NUMA-aware memory coloring for multicore real-time systems. J. Syst. Archit. 2021, 118, 102188. [Google Scholar] [CrossRef]
- Hassan, M. Reduced latency DRAM for multi-core safety-critical real-time systems. Real-Time Syst. 2019, 56, 171–206. [Google Scholar] [CrossRef]
- Mancuso, R.; Dudko, R.; Betti, E.; Cesati, M.; Caccamo, M.; Pellizzoni, R. Real-time cache management framework for multi-core architectures. In Proceedings of the 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), Philadelphia, PA, USA, 9–11 April 2013; pp. 45–54. [Google Scholar] [CrossRef]
- Sun, G.; Shen, J.; Veidenbaum, A.V. Combining prefetch control and cache partitioning to improve multicore performance. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 953–962. [Google Scholar] [CrossRef]
- Yun, H.; Yao, G.; Pellizzoni, R.; Caccamo, M.; Sha, L. Memory Bandwidth Management for Efficient Performance Isolation in Multi-Core Platforms. IEEE Trans. Comput. 2015, 65, 562–576. [Google Scholar] [CrossRef]
- Xu, M.; Gifford, R.; Phan, L.T.X. Holistic multi-resource allocation for multicore real-time virtualization. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Altmeyer, S.; Davis, R.I.; Indrusiak, L.; Maiza, C.; Nelis, V.; Reineke, J. A generic and compositional framework for multicore response time analysis. In Proceedings of the 23rd International Conference on Real Time and Networks Systems, Dortmund, Germany, 7–8 June 2015; pp. 129–138. [Google Scholar] [CrossRef]
- Negrean, M.; Schliecker, S.; Ernst, R. Response-time analysis of arbitrarily activated tasks in multiprocessor systems with shared resources. In Proceedings of the 2009 Design, Automation & Test in Europe Conference & Exhibition, Nice, France, 20–24 April 2009; pp. 524–529. [Google Scholar] [CrossRef]
- Schranzhofer, A.; Pellizzoni, R.; Chen, J.J.; Thiele, L.; Caccamo, M. Worst-case response time analysis of resource access models in multi-core systems. In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 July 2010; pp. 332–337. [Google Scholar] [CrossRef]
- Choi, J.; Kang, D.; Ha, S. Conservative modeling of shared resource contention for dependent tasks in partitioned multi-core systems. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 181–186. [Google Scholar] [CrossRef]
- Chen, J.J. Partitioned multiprocessor fixed-priority scheduling of sporadic real-time tasks. In Proceedings of the 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 5–8 July 2016; pp. 251–261. [Google Scholar] [CrossRef]
- Chen, J.; Du, C.; Xie, F.; Yang, Z. Schedulability Analysis of Non-Preemptive Strictly Periodic Tasks in Multi-Core Real-Time Systems. Real-Time Syst. 2016, 52, 239–271. [Google Scholar] [CrossRef]
- Huang, W.H.; Chen, J.J.; Reineke, J. MIRROR: Symmetric timing analysis for real-time tasks on multicore platforms with shared resources. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 5–9 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Choi, J.; Ha, S. Worst-Case Response Time Analysis of a Synchronous Dataflow Graph in a Multiprocessor System with Real-Time Tasks. ACM Trans. Des. Autom. Electron. Syst. 2017, 22, 1–26. [Google Scholar] [CrossRef]
- Foughali, M.; Hladik, P.E.; Zuepke, A. Compositional verification of embedded real-time systems. J. Syst. Archit. 2023, 142, 102928. [Google Scholar] [CrossRef]
- Andersson, B.; Kim, H.; Niz, D.D.; Klein, M.; Rajkumar, R.R.; Lehoczky, J. Schedulability Analysis of Tasks with Corunner-Dependent Execution Times. ACM Trans. Embed. Comput. Syst. 2018, 17, 1–29. [Google Scholar] [CrossRef]
- Al-bayati, Z.; Sun, Y.; Zeng, H.; Natale, M.D.; Zhu, Q.; Meyer, B.H. Partitioning and Selection of Data Consistency Mechanisms for Multicore Real-Time Systems. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–28. [Google Scholar] [CrossRef]
- Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 1973, 20, 46–61. [Google Scholar] [CrossRef]
- Joseph, M.; Pandya, P. Finding Response Times in a Real-Time System. Comput. J. 1986, 29, 390–395. [Google Scholar] [CrossRef]
- Davis, R.I.; Burns, A. Priority assignment for global fixed priority pre-emptive scheduling in multiprocessor real-time systems. In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, Washington, DC, USA, 1–4 December 2009; pp. 398–409. [Google Scholar] [CrossRef]
- Buttazzo, G.C. Rate Monotonic vs. EDF: Judgment Day. Real-Time Syst. 2003, 29, 5–26. [Google Scholar] [CrossRef]
- Burns, A.; Dobbing, B.; Vardanega, T. Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems. Ada Lett. 2004, 24, 1–74. [Google Scholar] [CrossRef]









| Task | C | D | T | I | Core M |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 0 | 0 |
| 1 | 2 | 4 | 5 | 1 | 0 |
| 2 | 1 | 3 | 5 | 1 | 1 |
| Task | C | D | T | I | Core M |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 1 | 0 |
| 1 | 1 | 6 | 7 | 1 | 1 |
| Task | C | D | T | I | Core M |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 1 | 0 |
| 1 | 2 | 5 | 5 | 0 | 0 |
| 2 | 1 | 3 | 5 | 1 | 1 |
| Number of Cores | Utilization | Tasks | Broadcasting Tasks | Interference with WCET (%) | Scenario |
|---|---|---|---|---|---|
| 2 | 1.1 | 4 | 2 | 10 | 1 |
| 20 | 2 | ||||
| 30 | 3 | ||||
| 1.5 | 10 | 4 | |||
| 20 | 5 | ||||
| 30 | 6 | ||||
| 4 | 2.4 | 12 | 3 | 10 | 7 |
| 20 | 8 | ||||
| 30 | 9 | ||||
| 3 | 10 | 10 | |||
| 20 | 11 | ||||
| 30 | 12 | ||||
| 6 | 3.1 | 16 | 4 | 10 | 13 |
| 20 | 14 | ||||
| 30 | 15 | ||||
| 4.5 | 10 | 16 | |||
| 20 | 17 | ||||
| 30 | 18 | ||||
| 8 | 4.1 | 20 | 5 | 10 | 19 |
| 20 | 20 | ||||
| 30 | 21 | ||||
| 6 | 10 | 22 | |||
| 20 | 23 | ||||
| 30 | 24 | ||||
| 10 | 5.1 | 28 | 7 | 10 | 25 |
| 20 | 26 | ||||
| 30 | 27 | ||||
| 7.5 | 10 | 28 | |||
| 20 | 29 | ||||
| 30 | 30 |
| Id | C | D | T | I |
|---|---|---|---|---|
| 0 | 52 | 300 | 300 | 14 |
| 1 | 11 | 300 | 300 | 0 |
| 2 | 52 | 400 | 400 | 5 |
| 3 | 11 | 400 | 400 | 0 |
| (a) Measured | ||||
|---|---|---|---|---|
| Activation k | ||||
| 0 | 1 | 2 | 3 | |
| 55.707 | 59.031 | 55.704 | 55.713 | |
| 10.0023 | 10.00231 | 10.00231 | 10.00231 | |
| 60.688 | 50.4036 | 50.3931 | - | |
| 81.0023 | 81.0021 | 81.0021 | - | |
| (b) | ||||
| Activation k | ||||
| 0 | 1 | 2 | 3 | |
| 57 | 62 | 62 | 57 | |
| 11 | 11 | 11 | 11 | |
| 102 | 102 | 102 | - | |
| 130 | 135 | 130 | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, L.; Guasque, A.; Balbastre, P.; Simó, J.; Crespo, A. Schedulability Analysis in Fixed-Priority Real-Time Multicore Systems with Contention. Appl. Sci. 2024, 14, 4033. https://doi.org/10.3390/app14104033
Ortiz L, Guasque A, Balbastre P, Simó J, Crespo A. Schedulability Analysis in Fixed-Priority Real-Time Multicore Systems with Contention. Applied Sciences. 2024; 14(10):4033. https://doi.org/10.3390/app14104033
Chicago/Turabian StyleOrtiz, Luis, Ana Guasque, Patricia Balbastre, José Simó, and Alfons Crespo. 2024. "Schedulability Analysis in Fixed-Priority Real-Time Multicore Systems with Contention" Applied Sciences 14, no. 10: 4033. https://doi.org/10.3390/app14104033
APA StyleOrtiz, L., Guasque, A., Balbastre, P., Simó, J., & Crespo, A. (2024). Schedulability Analysis in Fixed-Priority Real-Time Multicore Systems with Contention. Applied Sciences, 14(10), 4033. https://doi.org/10.3390/app14104033

