Experimental and Numerical Study of the Effect of Rock Dissolution on Absolute Permeability of Limestone Sub-Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characterization
2.2. Experimental Methods
2.3. Pore Network Modeling
3. Results and Discussion
3.1. Change in Pore Space Due to Rock Dissolution
3.2. Connected vs. Total Porosity
3.3. Permeability vs. Porosities
3.4. Permeability vs. Tortuosity and Specific Surface Area
3.5. Permeability vs. Mean Pore Radius
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carman, P.C. Fluid flow through granular beds. Chem. Eng. Res. Des. 1997, 75, S32–S48. [Google Scholar] [CrossRef]
- Eichheimer, P.; Thielmann, M.; Fujita, W.; Golabek, G.J.; Nakamura, M.; Okumura, S.; Nakatani, T.; Kottwitz, M.O. Combined numerical and experimental study of microstructure and permeability in porous granular media. Solid Earth 2020, 11, 1079–1095. [Google Scholar] [CrossRef]
- Latief, F.D.E.; Fauzi, U. Kozeny–Carman and empirical formula for the permeability of computer rock models. Int. J. Rock Mech. Min. Sci. 2012, 50, 117–123. [Google Scholar] [CrossRef]
- Martys, N.S.; Torquato, S.; Bentz, D.P. Universal scaling of fluid permeability for sphere packings. Phys. Rev. E 1994, 50, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Zhang, S.; Paterson, M.S.; Cox, S.F. Porosity and permeability evolution during hot isostatic pressing of calcite aggregates. J. Geophys. Res. 1994, 99, 15741. [Google Scholar] [CrossRef]
- Bernabe, Y.; Brace, W.F.; Evans, B. Permeability, porosity and pore geometry of hot-pressed calcite. Mech. Mater. 1982, 1, 173–183. [Google Scholar] [CrossRef]
- Mavko, G.; Nur, A. The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics 1997, 62, 1480–1482. [Google Scholar] [CrossRef]
- Rodriguez, E.; Giacomelli, F.; Vazquez, A. Permeability-Porosity Relationship in RTM for Different Fiberglass and Natural Reinforcements. J. Compos. Mater. 2004, 38, 259–268. [Google Scholar] [CrossRef]
- Xu, P.; Yu, B. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water. Resour. 2008, 31, 74–81. [Google Scholar] [CrossRef]
- Luquot, L.; Rodriguez, O.; Gouze, P. Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transp. Porous. Media 2014, 101, 507–532. [Google Scholar] [CrossRef]
- Menke, H.P.; Bijeljic, B.; Blunt, M.J. Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH. Geochim. Cosmochim. Acta 2017, 204, 267–285. [Google Scholar] [CrossRef]
- Noiriel, C. Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys. Res. Lett. 2004, 31, L24603. [Google Scholar] [CrossRef]
- Smith, M.M.; Sholokhova, Y.; Hao, Y.; Carroll, S.A. CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments. Adv. Water. Resour. 2013, 62, 370–387. [Google Scholar] [CrossRef]
- Voltolini, M.; Ajo-Franklin, J. The effect of CO2-induced dissolution on flow properties in Indiana Limestone: An in situ synchrotron X-ray micro-tomography study. Int. J. Greenh. Gas. Control 2019, 82, 38–47. [Google Scholar] [CrossRef]
- Koponen, A.; Kataja, M.; Timonen, J. Permeability and effective porosity of porous media. Phys. Rev. E 1997, 56, 3319–3325. [Google Scholar] [CrossRef]
- Luquot, L.; Gouze, P. Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem. Geol. 2009, 265, 148–159. [Google Scholar] [CrossRef]
- Maus, S.; Schneebeli, M.; Wiegmann, A. An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice. Cryosphere 2021, 15, 4047–4072. [Google Scholar] [CrossRef]
- Meredith, P.G.; Main, I.G.; Clint, O.C.; Li, L. On the threshold of flow in a tight natural rock. Geophys. Res. Lett. 2012, 39, 4307. [Google Scholar] [CrossRef]
- Revil, A.; Kessouri, P.; Torres-Verdín, C. Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone. Geophysics 2014, 79, D301–D318. [Google Scholar] [CrossRef]
- Sueyoshi, K.; Yokoyama, T.; Katayama, I. Experimental Measurement of the Transport Flow Path Aperture in Thermally Cracked Granite and the Relationship between Pore Structure and Permeability. Geofluids 2020, 2020, 8818293. [Google Scholar] [CrossRef]
- Arns, C.; Knackstedt, M.; Martys, N. Cross-property correlations and permeability estimation in sandstone. Phys. Rev. E 2005, 72, 046304. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, Y. The transport properties of networks of cracks and pores. J. Geophys. Res. Solid Earth 1995, 100, 4231–4241. [Google Scholar] [CrossRef]
- Martys, N.; Garboczi, E.J. Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. Phys. Rev. B 1992, 46, 6080–6090. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, N.; Yokoyama, T. Permeability of porous media: Role of the critical pore size. J. Geophys. Res. Solid Earth 2017, 122, 6955–6971. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Martys, N.; Bentz, D.P.; Garboczi, E.J.; Torquato, S. Cross-property relations and permeability estimation in model porous media. Phys. Rev. E 1993, 48, 4584–4591. [Google Scholar] [CrossRef] [PubMed]
- Lamy-Chappuis, B.; Angus, D.; Fisher, Q.; Grattoni, C.; Yardley, B.W.D. Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophys. Res. Lett. 2014, 41, 399–406. [Google Scholar] [CrossRef]
- Rötting, T.S.; Luquot, L.; Carrera, J.; Casalinuovo, D.J. Changes in porosity, permeability, water retention curve and reactive surface area during carbonate rock dissolution. Chem. Geol. 2015, 403, 86–98. [Google Scholar] [CrossRef]
- Nogues, J.P.; Fitts, J.P.; Celia, M.A.; Peters, C.A. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 2013, 49, 6006–6021. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative prediction of permeability in porous rock. Phys. Rev. B 1986, 34, 8179–8181. [Google Scholar] [CrossRef]
- Bolysbek, D.A.; Kuljabekov, A.B.; Uzbekaliyev, K.S.; Assilbekov, B.K. Effect of Rock Dissolution on Two-Phase Relative Permeabilities: Pore-Scale Simulations Based on Experimental Data. Appl. Sci. 2023, 13, 11385. [Google Scholar] [CrossRef]
- Assilbekov, B.; Bolysbek, D.; Akasheva, Z. Pore-Scale Modeling of Fluid Flow in Porous Media; NJSC Kazakh National Research Technical University named after K.I. Satbayev: Almaty, Kazakhstan, 2022; 118p. [Google Scholar]
- Thermo Fisher Scientific. User’s Guide Avizo Software; Thermo Fisher Scientific: Waltham, MA, USA, 2019. [Google Scholar]
- Li, Y.; Chi, Y.; Han, S.; Zhao, C.; Miao, Y. Pore-throat structure characterization of carbon fiber reinforced resin matrix composites: Employing Micro-CT and Avizo technique. PLoS ONE 2021, 16, e0257640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, G.; Zhang, C.; Liu, S.; Elsworth, D.; Zhang, T. Pore-Scale Reconstruction and Simulation of Non-Darcy Flow in Synthetic Porous Rocks. J. Geophys. Res. Solid Earth 2018, 123, 2770–2786. [Google Scholar] [CrossRef]
- Akasheva, Z.; Bolysbek, D.; Assilbekov, B. Study of carbonate rock dissolution using X-ray microcomputed tomography: Impact of acid flow rate. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2023, 1, 20–32. [Google Scholar] [CrossRef]
- Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast. J. Geophys. Res. 2009, 114, F02016. [Google Scholar] [CrossRef]
- Hommel, J.; Coltman, E.; Class, H. Porosity–Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media. Transp. Porous. Media 2018, 124, 589–629. [Google Scholar] [CrossRef]
- Manmath, N.; Panda, L.W.L. Estimation of Single-Phase Permeability from Parameters of Particle-Size Distribution. Am. Assoc. Pet. Geol. Bull. 1994, 78, 1028–1039. [Google Scholar] [CrossRef]
- Yin, P.; Song, H.; Ma, H.; Yang, W.; He, Z.; Zhu, X. The modification of the Kozeny-Carman equation through the lattice Boltzmann simulation and experimental verification. J. Hydrol. 2022, 609, 127738. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Jing, X.; Xiao, W.; Cui, Q. Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media. Pet. Explor. Dev. 2019, 46, 594–604. [Google Scholar] [CrossRef]
Sample Name | Porosity, % | Permeability, µm2 | Composition, % | ||
---|---|---|---|---|---|
Calcite | Dolomite | Quartz | |||
#1 | 19.0 | 0.29 | 99 | - | 1 |
#2 | 20.6 | 0.43 | 100 | - | - |
#3 | 20.9 | 0.71 | 99 | - | 1 |
#4 | 20.0 | 0.45 | 100 | - | - |
Sample Name | Mass Concentration of HCl, % | Flow Rate, mL/min | Permeability after HCl Injection, µm2 | Permeability Ratio | Breakthrough Pore Volumes, PV |
---|---|---|---|---|---|
#1 | 18 | 2 | 0.98 | 3.38 | 2.9 |
#2 | 18 | 8 | 3.79 | 8.81 | 2.4 |
#3 | 12 | 8 | 3.85 | 5.42 | 4.2 |
#4 | 12 | 4 | 4.10 | 9.11 | 4.4 |
Name of the Cylindrical Sample | #1 | #2 | #3 | #4 | |
---|---|---|---|---|---|
Number of sub-volumes extracted | Before injection | 59 | 56 | 52 | 37 |
After injection | 59 | 56 | 52 | 37 |
Reference | , % | Porous Material | Relationship Type for Determination of |
---|---|---|---|
[4] | 3, 9 | Sphere packing, sintered porous media | |
[6] | 4 | Hot-pressed calcite | |
[8] | 2.5, 3.5, 4.5 | Fontainebleau sandstone, fused glass beads, hot-pressed calcite | |
[16] | 33 | Randomly placed squares | |
[37] | 9–14 | Basalt clasts | |
[17] | 5.9 | Carbonate rocks | |
[19] | 0.85 | Microgranite | |
[20] | 1.9 | Fontainebleau sandstone | |
[21] | 0.855 | Granite | |
[18] | 2.4 | Young sea ice | |
This study (before) Heterogeneous Naturally fractured | 7.3 5.4 | Carbonate rocks | |
This study (after) Heterogeneous Naturally fractured | 4.8 6.2 | Carbonate rocks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akasheva, Z.K.; Assilbekov, B.K.; Bolysbek, D.A.; Iskakov, B.; Uzbekaliyev, K.S.; Issayev, G.I. Experimental and Numerical Study of the Effect of Rock Dissolution on Absolute Permeability of Limestone Sub-Samples. Appl. Sci. 2024, 14, 34. https://doi.org/10.3390/app14010034
Akasheva ZK, Assilbekov BK, Bolysbek DA, Iskakov B, Uzbekaliyev KS, Issayev GI. Experimental and Numerical Study of the Effect of Rock Dissolution on Absolute Permeability of Limestone Sub-Samples. Applied Sciences. 2024; 14(1):34. https://doi.org/10.3390/app14010034
Chicago/Turabian StyleAkasheva, Zhibek K., Bakytzhan K. Assilbekov, Darezhat A. Bolysbek, Berik Iskakov, Kenbai Sh. Uzbekaliyev, and Gani I. Issayev. 2024. "Experimental and Numerical Study of the Effect of Rock Dissolution on Absolute Permeability of Limestone Sub-Samples" Applied Sciences 14, no. 1: 34. https://doi.org/10.3390/app14010034
APA StyleAkasheva, Z. K., Assilbekov, B. K., Bolysbek, D. A., Iskakov, B., Uzbekaliyev, K. S., & Issayev, G. I. (2024). Experimental and Numerical Study of the Effect of Rock Dissolution on Absolute Permeability of Limestone Sub-Samples. Applied Sciences, 14(1), 34. https://doi.org/10.3390/app14010034