Research on Gesture Recognition System Using Multiple Sensors Based on Earth’s Magnetic Field and 1D Convolution Neural Network
Abstract
:1. Introduction
2. Gesture Recognition System
2.1. Working Principle
2.2. System Composition
2.3. Experimental Test
3. Deep Learning Algorithm
3.1. CNN-1D (Composition of Convolutional Neural Network)
3.2. Description of the Dataset
3.3. Models
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naglot, D.; Kulkarni, M. Real Time Sign Language Recognition Using the Leap Motion Controller. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; pp. 1–5. [Google Scholar]
- Dong, C.; Leu, M.C.; Yin, Z. American Sign Language Alphabet Recognition Using Microsoft Kinect. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 44–52. [Google Scholar]
- Sharma, S.; Kumar, K. ASL-3DCNN: American Sign Language Recognition Technique Using 3-D Convolutional Neural Networks. Multimed. Tools Appl. 2021, 80, 26319–26331. [Google Scholar] [CrossRef]
- Pansare, J.R.; Ingle, M. Vision-Based Approach for American Sign Language Recognition Using Edge Orientation Histogram. In Proceedings of the International Conference on Image, Vision and Computing (ICIVC), Portsmouth, UK, 3–5 August 2016; pp. 86–90. [Google Scholar]
- Mohamed, N.; Member, G.S. A Review of the Hand Gesture Recognition System: Current Progress and Future Directions. IEEE Access 2021, 9, 157422–157436. [Google Scholar] [CrossRef]
- Jiang, S.; Kang, P.; Song, X.; Member, S.; Lo, B.P.L.; Member, S.; Shull, P.B. Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. IEEE Rev. Biomed. Eng. 2021, 15, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Savur, C.; Sahin, F. American Sign Language Recognition System by Using Surface EMG Signal. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 2872–2877. [Google Scholar]
- Jani, A.B.; Kotak, N.A.; Roy, A.K. Sensor Based Hand Gesture Recognition System for English Alphabets Used in Sign Language of Deaf-Mute People. In Proceedings of the IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Ford, L.K.; Borneman, J.D.; Can, C.; Kaya, Y.; Sign, I.; Using, L.; Lite, T.; Fadlilah, U.; Mahamad, A.K.; Handaga, B. Development of a Wearable Device for Sign Language Recognition. J. Phys. Conf. Ser. 2018, 1019, 012017. [Google Scholar]
- Wu, Y.T.; Gomes, M.K.; da Silva, W.H.; Lazari, P.M.; Fujiwara, E. Integrated Optical Fiber Force Myography Sensor as Pervasive Predictor of Hand Postures. Biomed. Eng. Comput. Biol. 2020, 11, 117959722091282. [Google Scholar] [CrossRef]
- Wen, H.; Rojas, J.R.; Dey, A.K. Serendipity: Finger Gesture Recognition Using an off-the-Shelf Smartwatch. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 3847–3851. [Google Scholar]
- Fahn, C.S.; Sun, H. Development of a Fingertip Glove Equipped with Magnetic Tracking Sensors. Sensors 2010, 10, 1119–1140. [Google Scholar] [CrossRef]
- Chan, T.K.; Yu, Y.K.; Kam, H.C.; Wong, K.H. Robust Hand Gesture Input Using Computer Vision, Inertial Measurement Unit (IMU) and Flex Sensors. In Proceedings of the IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA), Hefei, China, 18–21 May 2018; pp. 95–99. [Google Scholar]
- Friedman, N.; Rowe, J.B.; Reinkensmeyer, D.J.; Bachman, M. The Manumeter: A Wearable Device for Monitoring Daily Use of the Wrist and Fingers. IEEE J. Biomed. Health Inform. 2014, 18, 1804–1812. [Google Scholar] [CrossRef]
- Siddiqui, N.; Chan, R.H.M. Hand Gesture Recognition Using Multiple Acoustic Measurements at Wrist. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 56–62. [Google Scholar] [CrossRef]
- Jiang, S.; Lv, B.; Guo, W.; Zhang, C.; Wang, H.; Sheng, X.; Shull, P.B. Feasibility of Wrist-Worn, Real-Time Hand, and Surface Gesture Recognition via SEMG and IMU Sensing. IEEE Trans. Ind. Inform. 2018, 14, 3376–3385. [Google Scholar] [CrossRef]
- Cho, S.G.; Yoshikawa, M.; Ding, M.; Takamatsu, J.; Ogasawara, T. Machine-Learning-Based Hand Motion Recognition System by Measuring Forearm Deformation with a Distance Sensor Array. Int. J. Intell. Robot. Appl. 2019, 3, 418–429. [Google Scholar] [CrossRef]
- Zimmerman, T.G.; Lanier, J.; Blanchard, C.; Bryson, S.; Harvill, Y. Hand Gesture Interface Device. ACM Sigchi Bull. 1987, 18, 189–192. [Google Scholar] [CrossRef]
- Bellitti, P.; De Angelis, A.; DIonigi, M.; Sardini, E.; Serpelloni, M.; Moschitta, A.; Carbone, P. A Wearable and Wirelessly Powered System for Multiple Finger Tracking. IEEE Trans. Instrum. Meas. 2020, 69, 2542–2551. [Google Scholar] [CrossRef]
- Pasku, V.; De Angelis, A.; De Angelis, G.; Member, S.; Arumugam, D.D.; Dionigi, M.; Carbone, P.; Moschitta, A.; Ricketts, D.S. Magnetic Field-Based Positioning Systems. IEEE Commun. Surv. Tutor. 2017, 19, 2003–2017. [Google Scholar] [CrossRef]
- Rinalduzzi, M.; De Angelis, A.; Santoni, F.; Buchicchio, E.; Moschitta, A.; Carbone, P.; Bellitti, P.; Serpelloni, M. Gesture Recognition of Sign Language Alphabet Using a Magnetic Positioning System. Appl. Sci. 2021, 11, 5594. [Google Scholar] [CrossRef]
- Santoni, F.; De Angelis, A.; Moschitta, A.; Carbone, P. A Multi-Node Magnetic Positioning System with a Distributed Data Acquisition Architecture. Sensors 2020, 20, 6210. [Google Scholar] [CrossRef]
- Fahn, C.S.; Sun, H. Development of a Data Glove with Reducing Sensors Based on Magnetic Induction. IEEE Trans. Ind. Electron. 2005, 52, 585–594. [Google Scholar] [CrossRef]
- Santoni, F.; De Angelis, A.; Moschitta, A.; Carbone, P. MagIK: A Hand-Tracking Magnetic Positioning System Based on a Kinematic Model of the Hand. IEEE Trans. Instrum. Meas. 2021, 70, 9507313. [Google Scholar] [CrossRef]
- Siriborvornratanakul, T. Human Behavior in Image-Based Road Health Inspection Systems despite the Emerging AutoML. J. Big Data 2022, 9, 96. [Google Scholar] [CrossRef]
- Siriborvornratanakul, T. A New Human Factor Study in Developing Practical Vision-Based Applications with the Transformer-Based Deep Learning Model. In Proceedings of the International Conference on Human-Computer Interaction, AI-HCI, Virtual Event, 26 June–1 July 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 436–447. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef]
- Richardson, E.; Alaluf, Y.; Patashnik, O.; Nitzan, Y.; Azar, Y.; Shapiro, S.; Cohen-Or, D. Encoding in Style: A StyleGAN Encoder for Image-to-Image Translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 2287–2296. [Google Scholar]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.J. Phoneme Recognition Using Time-Delay Neural Networks. IEEE Trans. Acoust. 1989, 37, 328–339. [Google Scholar] [CrossRef]
- Dao, Q.; El-Yacoubi, M.A.; Rigaud, A.S. Detection of Alzheimer Disease on Online Handwriting Using 1D Convolutional Neural Network. IEEE Access 2023, 11, 2148–2155. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, S.; Wang, X.; Liang, T.; Wang, H.; Liu, X. A Compact Multi-Branch 1D Convolutional Neural Network for EEG-Based Motor Imagery Classification. Biomed. Signal Process. Control 2023, 81, 104456. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning ICML, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
Set | Data | Target | Percentage |
---|---|---|---|
Train Set | (720, 18, 1) | (720, 1) | 60% |
Validation Set | (240, 18, 1) | (240, 1) | 20% |
Test Set | (240, 18, 1) | (240, 1) | 20% |
Layer Name | Kernel Size | Kernel Number | Padding | Stride |
---|---|---|---|---|
Conv1 | 3 × 3 | 16 | 0 | 1 |
Conv2 | 3 × 3 | 32 | 0 | 1 |
Conv3 | 3 × 3 | 64 | 0 | 1 |
FC | - | 26 | - | - |
Model | Precision | Recall | F1 |
---|---|---|---|
CNN-Ges-Cla | 0.9842 | 0.9778 | 0.9757 |
LSTM-Ces-Cla | 0.9423 | 0.9312 | 0.9345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Chen, X.; He, Z.; Sun, H.; Han, R. Research on Gesture Recognition System Using Multiple Sensors Based on Earth’s Magnetic Field and 1D Convolution Neural Network. Appl. Sci. 2023, 13, 5544. https://doi.org/10.3390/app13095544
Shi B, Chen X, He Z, Sun H, Han R. Research on Gesture Recognition System Using Multiple Sensors Based on Earth’s Magnetic Field and 1D Convolution Neural Network. Applied Sciences. 2023; 13(9):5544. https://doi.org/10.3390/app13095544
Chicago/Turabian StyleShi, Bo, Xi Chen, Zhongzheng He, Haoyang Sun, and Ruoyu Han. 2023. "Research on Gesture Recognition System Using Multiple Sensors Based on Earth’s Magnetic Field and 1D Convolution Neural Network" Applied Sciences 13, no. 9: 5544. https://doi.org/10.3390/app13095544
APA StyleShi, B., Chen, X., He, Z., Sun, H., & Han, R. (2023). Research on Gesture Recognition System Using Multiple Sensors Based on Earth’s Magnetic Field and 1D Convolution Neural Network. Applied Sciences, 13(9), 5544. https://doi.org/10.3390/app13095544