The Effect of Seed Removal and Extraction Time on the Phenolic Profile of Plavac Mali Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Location
2.2. Fermentation Trials
- A
- control treatment, 7 day maceration
- B
- 21 day maceration
- C
- 49 day maceration
- D
- 21 day maceration with seed removal
- E
- 49 day maceration with seed removal
2.3. Phenol Compound Determination
2.4. Color Parameters
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Plavac Mali Wines’ Phenolic Profile
3.1.1. Anthocyanins
3.1.2. Phenolic Acids
3.1.3. Flavan-3-ols
3.2. Color Parameters
3.3. Sensory Analysis
3.4. Multivariate Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-Navarro, J.; Romero, E.G.; Gómez-Alonso, S.; Cañas, P.M.I. Comparison between the Phenolic Composition of Petit Verdot Wines Elaborated at Different Maceration/Fermentation Temperatures. Int. J. Food Prop. 2018, 21, 996–1007. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Busse-Valverde, N.; Fernández-Fernández, J.I.; Gómez-Plaza, E.; Gil-Muñoz, R. The Extraction Kinetics of Anthocyanins and Proanthocyanidins from Grape to Wine in Three Different Varieties. OENO One 2016, 50, 91–100. [Google Scholar] [CrossRef]
- Sacchi, K.; Bisson, F.L.; Adams, O.D. A Review of Winemaking Techniques on Phenolic Extraction in Red Wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar] [CrossRef]
- Gombau, J.; Pons-Mercadé, P.; Conde, M.; Asbiro, L.; Pascual, O.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutiérrez, I.; Zamora, F. Influence of Grape Seeds on Wine Composition and Astringency of Tempranillo, Garnacha, Merlot and Cabernet Sauvignon Wines. Food Sci. Nutr. 2020, 8, 3442–3455. [Google Scholar] [CrossRef]
- Casassa, L.F.; Huff, R.; Steele, N.B. Chemical Consequences of Extended Maceration and Post-Fermentation Additions of Grape Pomace in Pinot Noir and Zinfandel Wines from the Central Coast of California (USA). Food Chem. 2019, 300, 125147. [Google Scholar] [CrossRef]
- Setford, P.C.; Jeffery, D.W.; Grbin, P.R.; Muhlack, R.A. Factors Affecting Extraction and Evolution of Phenolic Compounds during Red Wine Maceration and the Role of Process Modelling. Trends Food Sci. Technol. 2017, 69, 106–117. [Google Scholar] [CrossRef]
- Şener, H. Effect of Temperature and Duration of Maceration on Colour and Sensory Properties of Red Wine: A Review. S. Afr. J. Enol. Vitic. 2018, 32, 227–234. [Google Scholar] [CrossRef]
- González-Neves, G.; Gil, G.; Barreiro, L. Influence of Grape Variety on the Extraction of Anthocyanins during the Fermentation on Skins. Eur. Food. Res. Technol. 2008, 226, 1349–1355. [Google Scholar] [CrossRef]
- Kennedy, J.; Saucier, C.; Glories, Y. Grape and Wine Phenolics: History and Perspective. Am. J. Enol. Vitic. 2006, 57, 239–248. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L.; Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception; IntechOpen: London, UK, 2020; ISBN 978-1-83962-576-3. [Google Scholar]
- Rossi, S.; Bestulić, E.; Horvat, I.; Plavša, T.; Lukić, I.; Bubola, M.; Ganić, K.K.; Ćurko, N.; Jagatić Korenika, A.-M.; Radeka, S. Comparison of Different Winemaking Processes for Improvement of Phenolic Composition, Macro- and Microelemental Content, and Taste Sensory Attributes of Teran (Vitis vinifera L.) Red Wines. LWT 2022, 154, 112619. [Google Scholar] [CrossRef]
- Hernández-Jiménez, A.; Kennedy, J.A.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effect of Ethanol on Grape Seed Proanthocyanidin Extraction. Am. J. Enol. Vitic. 2012, 63, 57–61. [Google Scholar] [CrossRef]
- Yokotsuka, K.; Sato, M.; Ueno, N.; Singleton, V.L. Colour and Sensory Characteristics of Merlot Red Wines Caused by Prolonged Pomace Contact. J. Wine Res. 2000, 11, 7–18. [Google Scholar] [CrossRef]
- Guaita, M.; Petrozziello, M.; Panero, L.; Tsolakis, C.; Motta, S.; Bosso, A. Influence of Early Seeds Removal on the Physicochemical, Polyphenolic, Aromatic and Sensory Characteristics of Red Wines from Gaglioppo Cv. Eur. Food Res. Technol. 2017, 243, 1311–1322. [Google Scholar] [CrossRef]
- Casassa, L.F.; Larsen, R.C.; Beaver, C.W.; Mireles, M.S.; Keller, M.; Riley, W.R.; Smithyman, R.; Harbertson, J.F. Sensory Impact of Extended Maceration and Regulated Deficit Irrigation on Washington State Cabernet Sauvignon Wines. Am. J. Enol. Vitic. 2013, 64, 505–514. [Google Scholar] [CrossRef]
- Garrido-Bañuelos, G.; Buica, A.; Kuhlman, B.; Schückel, J.; Zietsman, A.J.J.; Willats, W.G.T.; Moore, J.P.; du Toit, W.J. Untangling the Impact of Red Wine Maceration Times on Wine Ageing. A Multidisciplinary Approach Focusing on Extended Maceration in Shiraz Wines. Food Res. Int. 2021, 150, 110697. [Google Scholar] [CrossRef]
- Lee, J.; Kennedy, J.A.; Devlin, C.; Redhead, M.; Rennaker, C. Effect of Early Seed Removal during Fermentation on Proanthocyanidin Extraction in Red Wine: A Commercial Production Example. Food Chem. 2008, 107, 1270–1273. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Busse-Valverde, N.; López-Roca, J.M.; Gil-Muñoz, R.; Gómez-Plaza, E. Grape Seed Removal: Effect on Phenolics, Chromatic and Organoleptic Characteristics of Red Wine. Int. J. Food Sci. Technol. 2014, 49, 34–41. [Google Scholar] [CrossRef]
- Available online: https://www.apprrr.hr/registri/ (accessed on 28 March 2023).
- Lukic, I.; Radeka, S.; Budi, I.; Bubola, M.; Vrhovsek, U. Targeted UPLC-QqQ-MS / MS Profiling of Phenolic Compounds for Differentiation of Monovarietal Wines and Corroboration of Particular Varietal Typicity Concepts. Food Chem. 2019, 300, 125251. [Google Scholar] [CrossRef]
- Prša, I.; Rakić, V.; Rašić, D.; Vučetić, V.; Teišman Prtenjak, M.; Omazić, B.; Blašković, L.; Karoglan, M.; Preiner, D.; Drenjančević, M.; et al. Influence of Weather and Climatic Conditions on the Viticultural Productoin in Croatia. In Proceedings of the XIV International Terroir Congress, 2 ClimWine Symposium, IVES, Bordeaux, France, 3–8 July 2022. [Google Scholar]
- Tomaz, I.; Maslov, L. Simultaneous Determination of Phenolic Compounds in Different Matrices Using Phenyl-Hexyl Stationary Phase. Food Anal. Meth. 2016, 9, 401–410. [Google Scholar] [CrossRef]
- Glories, Y. La Couleur Des Vins Rouges Ll, Connaissance de La Vigne et Du Vin. Vigne Vin 1984, 18, 253–271. [Google Scholar]
- Harter, H.L. Expected values of normal order statistics. Biometrika 1961, 48, 151–165. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Rouxinol, M.I.; Rosário Martins, M.; Vanda Salgueiro, M.; Costa, J.; Mota Barroso, J.; Rato, A.E. Climate Effect on Morphological Traits and Polyphenolic Composition of Red Wine Grapes of Vitis vinifera. Beverages 2023, 9, 8. [Google Scholar] [CrossRef]
- Yue, X.F.; Jing, S.S.; Ni, X.F.; Zhang, K.K.; Fang, Y.L.; Zhang, Z.W.; Ju, Y.L. Anthocyanin and Phenolic Acids Contents Influence the Color Stability and Antioxidant Capacity of Wine Treated with Mannoprotein. Front. Nutr. 2021, 8, 691784. [Google Scholar] [CrossRef] [PubMed]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and Antioxidant Activity of Red Wines Made from Endemic Grape Varieties. Ann. Agr. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Andabaka, Ž.; Stupić, D.; Tomaz, I.; Marković, Z.; Karoglan, M.; Zdunić, G.; Kontić, J.K.; Maletić, E.; Šikuten, I.; Preiner, D. Characterization of Berry Skin Phenolic Profiles in Dalmatian Grapevine Varieties. Appl. Sci. 2022, 12, 7822. [Google Scholar] [CrossRef]
- Segade, S.R.; Orriols, I.; Gerbi, V.; Rolle, L. Phenolic Characterization of Thirteen Red Grape Cultivars from Galicia by Anthocyanin Profile and Flavanol Composition. OENO One 2009, 43, 189–198. [Google Scholar] [CrossRef]
- Budić-Leto, I.; Gracin, L.; Lovric, T.; Vrhovsek, U. Effects of Maceration Conditions on the Polyphenolic Composition of Red Wine “Plavac Mali”. Vitis J. Grape Res. 2008, 47, 245–250. [Google Scholar]
- Sparrow, A.M.; Gill, W.; Dambergs, R.G.; Close, D.C. Focus on the Role of Seed Tannins and Pectolytic Enzymes in the Color Development of Pinot Noir Wine. Curr. Res. Food Sci. 2021, 4, 405–413. [Google Scholar] [CrossRef]
- Romić, D.; Karoglan Kontić, J.; Preiner, D.; Romić, M.; Lazarević, B.; Maletić, E.; Ondrašek, G.; Andabaka, Ž.; Bakić Begić, H.; Bubalo Kovačić, M.; et al. Performance of grapevine grown on reclaimed Mediterranean karst land: Appearance and duration of high temperature events and effects of irrigation. Agric. Water Manag. 2020, 236, 106166. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. Clim. Change Food Sci. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Fujita, A.; Goto-Yamamoto, N.; Aramaki, I.; Hashizume, K. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci. Biotechnol. Biochem. 2006, 70, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Korenika, A.M.J.; Tomaz, I.; Preiner, D.; Plichta, V.; Jeromel, A. Impact of Commercial Yeasts on Phenolic Profile of Plavac Mali Wines from Croatia. Fermentation 2021, 7, 92. [Google Scholar] [CrossRef]
- Kocabey, N.; Yilmaztekin, M.; Hayaloglu, A.A. Effect of Maceration Duration on Physicochemical Characteristics, Organic Acid, Phenolic Compounds and Antioxidant Activity of Red Wine from Vitis vinifera L. Karaoglan. J. Food Sci. Technol. 2016, 53, 3557–3565. [Google Scholar] [CrossRef]
- Poklar Ulrih, N.; Opara, R.; Skrt, M.; Košmerl, T.; Wondra, M.; Abram, V. Part I. Polyphenols Composition and Antioxidant Potential during ‘Blaufränkisch’ Grape Maceration and Red Wine Maturation, and the Effects of Trans-Resveratrol Addition. Food Chem. Toxicol. 2020, 137, 111122. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Martín-Luis, B.; Carrillo-López, M.; Lamuela-Raventós, R.; Díaz-Romero, C.; Boulton, R. Effect of Caffeic Acid on the Color of Red Wine. J. Agric. Food Chem. 2002, 50, 2062–2067. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of Copigmentation and Phenolic Composition on Wine Color. J. Food Sci. Technol. 2016, 53, 2540–2547. [Google Scholar] [CrossRef]
- Rustioni, L.; Bedgood, D.R.; Failla, O.; Prenzler, P.D.; Robards, K. Copigmentation and Anti-Copigmentation in Grape Extracts Studied by Spectrophotometry and Post-Column-Reaction HPLC. Food Chem. 2012, 132, 2194–2201. [Google Scholar] [CrossRef]
- Casassa, L.F. Flavonoid Phenolics in Red Winemaking. In Phenolic Compounds—Natural Sources, Importance and Applications; Soto-Hernández, M., Palma-Tenango, M., del Garcia-Mateos, M.R., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-2957-8. [Google Scholar]
- Casassa, L.F.; Harbertson, J.F. Extraction, Evolution, and Sensory Impact of Phenolic Compounds During Red Wine Maceration. Annu. Rev. Food Sci. Technol. 2014, 5, 83–109. [Google Scholar] [CrossRef]
- González-Manzano, S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Extraction of Flavan-3-Ols from Grape Seed and Skin into Wine Using Simulated Maceration. Anal. Chim. Acta 2004, 513, 283–289. [Google Scholar] [CrossRef]
- Koyama, K.; Goto-Yamamoto, N.; Hashizume, K. Influence of Maceration Temperature in Red Wine Vinification on Extraction of Phenolics from Berry Skins and Seeds of Grape (Vitis vinifera). Biosci. Biotechnl. Biochem. 2007, 71, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Gutierrez, I.; Lorenzo, E.; Espinosa, A. Phenolic Composition and Magnitude of Copigmentation in Young and Shortly Aged Red Wines Made from the Cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem. 2005, 92, 269–283. [Google Scholar] [CrossRef]
- Canals, R.; Llaudy, M.D.C.; Canals, J.M.; Zamora, F. Influence of the Elimination and Addition of Seeds on the Colour, Phenolic Composition and Astringency of Red Wine. Eur. Food Res. Technol. 2008, 226, 1183–1190. [Google Scholar] [CrossRef]
- Federico Casassa, L.; Beaver, C.W.; Mireles, M.S.; Harbertson, J.F. Effect of Extended Maceration and Ethanol Concentration on the Extraction and Evolution of Phenolics, Colour Components and Sensory Attributes of Merlot Wines: Extended Maceration and Ethanol Concentration. Austr. J. Grape Wine Res. 2013, 19, 25–39. [Google Scholar] [CrossRef]
- Cliff, M.A.; Stanich, K.; Edwards, J.E.; Saucier, C.T. Adding Grape Seed Extract to Wine Affects Astringency and Other Sensory Attributes. J. Food Qual. 2012, 35, 263–271. [Google Scholar] [CrossRef]
- Amerine, M.A.; Roessler, E.B. Wines, Their Sensory Evaluation; W. H. Freeman: San Francisco, CA, USA, 1976; ISBN 978-0-7167-0553-6. [Google Scholar]
Compounds (mg/L) | TPT | Taste Descriptors | A | B | C | D | E | A | B | C | D | E |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 Year | 2015 Year | |||||||||||
Delphinidin-3-O-glucoside | 29.31 a | 30.71 a | 30.74 a | 25.11 b | 24.34 b | 15.90 a | 12.52 b | 11.73 bc | 9.90 c | 9.99 c | ||
Petunidin-3-O-glucoside | 9.87 b | 11.94 a | 12.11 a | 9.35 b | 8.35 c | 7.16 a | 5.62 b | 5,58 b | 3.08 c | 5.31 b | ||
Peonidin-3-O-glucoside | 2.69 c | 3.61 a | 3.46 a | 3.10 b | 3.54 a | 1.74 a | 1.42 b | 1.30 bc | 1.61 ab | 1.28 c | ||
Malvidin-3-O-glucoside | 193.30 a | 111.32 b | 109.31 b | 82.84 c | 81.75 c | 80.24 a | 67.38 b | 61.98 c | 45.31 d | 42.76 d | ||
Ʃ Anthocyanins | 235.17 a | 157.58 b | 155.62 b | 120.04 c | 117.98 c | 105.04 a | 85.94 b | 80.59 c | 59.90 d | 59.34 d | ||
Miricetin-3-O-glucoside | 2.91 ab | 3.20 a | 1.92 c | 2.66 b | 2.08 c | 1.03 a | 0.85 b | 0.78 b | 0.84 b | 0.87 b | ||
Quercetin-3-O-glucoside | 7.20 a | 7.86 a | 3.89 b | 3.32 c | 3.93 b | 2.36 a | 1.55 b | 0.88 c | 0.56 d | 1.08 c | ||
Ʃ Flavonols | 10.11 a | 11.06 a | 5.81 b | 5.98 b | 6.01 b | 3.40 a | 2.40 b | 1.66 cd | 1.39 d | 1.94 c | ||
trans-caftaric acid | 5 | Puckering astringent | 33.85 b | 38.87 a | 30.21 c | 24.47 d | 20.06 e | 27.83 a | 26.87 b | 21.33 c | 16.29 d | 16.20 d |
Caffeic acid | 13 | Puckering astringent | 4.55 b | 5.14 a | 4.57 b | 4.62 b | 4.21 b | 3.80 a | 3.70 a | 3.35 b | 3.27 bc | 3.01 c |
trans-coutaric acid | 10 | astringent | 11.07 b | 12.76 a | 10.29 c | 7.71 d | 6.05 e | 9.96 a | 9.52 a | 7.15 b | 4.88 c | 4.92 c |
trans-coumaric acid | 23 | Puckering astringent | 1.77 a | 1.48 b | 1.73 a | 1.54 ab | 1.80 a | 2.72 c | 2.96 b | 3.36 a | 3.09 b | 2.76 c |
Gallic acid | 50 | Puckering astringent | 62.11 a | 60.33 a | 65.78 a | 56.39 b | 56.89 b | 47.25 a | 48.09 a | 48.92 a | 27.35 b | 28.08 b |
Ʃ Phenolic acids | 113.35 a | 118.58 a | 112.58 a | 94.73 b | 89.01 b | 91.56 a | 91.14 a | 84.11 b | 54.88 c | 54.97 c | ||
(+)-Gallocatechin | 3.11 bc | 4.15 a | 3.31 b | 3.49 b | 2.93 c | 2.01 a | 1.96 a | 1.60 b | 1.91 a | 1.64 b | ||
Procyanidin B1 | 139/231 | Bitter/astringent | 6.93 ab | 7.71 a | 7.75 a | 7.52 a | 6.57 b | 4.87 a | 4.51 c | 4.80 ab | 3.96 d | 4.62 bc |
(+)-Catechin | 119/290 | Puckering Astringent/bitter | 24.96 d | 45.52 b | 73.48 a | 24.71 d | 33.80 c | 24.15 d | 34.72 b | 50.08 a | 25.30 d | 31.59 c |
Procyanidin B2 | 110/280 | Bitter/astringent | 12.41 d | 30.84 b | 54.22 a | 13.65 d | 19.54 c | 12.70 e | 23.32 b | 39.15 a | 15.53 d | 19.83 c |
(−)-Epicatechin-gallate | 4.60 b | 7.20 a | 7.23 a | 3.68 c | 4.11 b | 3.56 c | 4.67 b | 5.02 a | 3.63 c | 3.84 c | ||
Ʃ Flavan-3-ols | 52.01 d | 95.42 b | 145.99 a | 53.05 d | 66.95 c | 47.28 d | 69.17 b | 100.66 a | 50.32 d | 61.52 c | ||
Resveratrol-O-glucoside | 9.55 b | 12.09 a | 9.72 b | 8.38 c | 5.71 d | 5.64 a | 5.73 a | 4.84 b | 3.44 d | 4.01 c |
Year | Treatment | A420 | A520 | A620 | CI | T | Chromatic Structure | ||
---|---|---|---|---|---|---|---|---|---|
% Yellow Pigments | % Red Pigments | % Blue Pigments | |||||||
2014 | A | 2.43 | 3.69 | 0.51 | 6.63 a | 0.65 c | 36.65 c | 55.65 a | 7.69 c |
B | 2.45 | 3.45 | 0.52 | 6.42 c | 0.71 b | 38.16 b | 53.73 b | 8.09 b | |
C | 2.81 | 3.23 | 0.55 | 6.59 b | 0.86 a | 42.64 a | 49.01 c | 8.34 a | |
D | 2.48 | 3.34 | 0.53 | 6.35 c | 0.74 b | 39.05 b | 52.59 b | 8.35 a | |
E | 2.46 | 3.31 | 0.52 | 6.29 c | 0.74 b | 39.10 b | 52.62 b | 8.26 a | |
2015 | A | 2.02 | 3.05 | 0.48 | 5.55 a | 0.66 b | 36.39 c | 54.95 a | 8.64 c |
B | 2.03 | 2.98 | 0.50 | 5.51 b | 0.68 b | 36.84 c | 54.08 a | 9.07 b | |
C | 2.19 | 2.77 | 0.51 | 5.47 b | 0.79 a | 40.03 a | 50.63 c | 9.32 a | |
D | 2.05 | 2.86 | 0.50 | 5.39 c | 0.71 b | 38.03 b | 53.06 b | 9.27 a | |
E | 2.10 | 2.87 | 0.50 | 5.47 b | 0.73 b | 38.39 b | 52.47 b | 9.14 a |
Year | Treatment | Color Saturation | Sweetness | Bitterness | Acidity | Astringency | Aftertaste Intensity |
---|---|---|---|---|---|---|---|
2014 | A | 3.85 a | 2.00 b | 4.23 b | 2.33 a | 3.95 a | 3.05 bc |
B | 3.57 b | 2.00 b | 4.33 b | 2.18 b | 3.85 b | 2.95 c | |
C | 3.54 b | 2.14 a | 4.81 a | 2.23 a | 3.71 b | 3.57 a | |
D | 3.61 b | 2.16 a | 3.71 c | 2.19 b | 3.13 c | 3.23 b | |
E | 3.56 b | 2.09 a | 3.56 d | 2.18 b | 3.14 c | 3.56 a | |
2015 | A | 3.38 a | 1.95 a | 3.54 b | 2.28 a | 3.37 a | 2.85 b |
B | 2.95 b | 2.00 a | 3.57 ab | 1.85 b | 3.18 b | 2.95 b | |
C | 3.05 b | 1.99 a | 3.61 a | 1.99 b | 3.23 ab | 3.18 a | |
D | 3.04 b | 1.88 a | 3.37 c | 1.95 b | 3.04 c | 3.19 a | |
E | 3.13 b | 2.00 a | 3.49 b | 1.95 b | 3.13 bc | 3.00 b |
Treatment | Year | |
---|---|---|
2014 | 2015 | |
E | 1.004 a | 0.830 a |
D | 0.630 b | 0.679 a |
A | −0.308 c | −0.079 b |
B | −0.489 c | −0.536 c |
C | −0.838 d | −0.893 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagatić Korenika, A.-M.; Kozina, B.; Preiner, D.; Tomaz, I.; Volarević, J.; Jeromel, A. The Effect of Seed Removal and Extraction Time on the Phenolic Profile of Plavac Mali Wine. Appl. Sci. 2023, 13, 5411. https://doi.org/10.3390/app13095411
Jagatić Korenika A-M, Kozina B, Preiner D, Tomaz I, Volarević J, Jeromel A. The Effect of Seed Removal and Extraction Time on the Phenolic Profile of Plavac Mali Wine. Applied Sciences. 2023; 13(9):5411. https://doi.org/10.3390/app13095411
Chicago/Turabian StyleJagatić Korenika, Ana-Marija, Bernard Kozina, Darko Preiner, Ivana Tomaz, Josip Volarević, and Ana Jeromel. 2023. "The Effect of Seed Removal and Extraction Time on the Phenolic Profile of Plavac Mali Wine" Applied Sciences 13, no. 9: 5411. https://doi.org/10.3390/app13095411
APA StyleJagatić Korenika, A.-M., Kozina, B., Preiner, D., Tomaz, I., Volarević, J., & Jeromel, A. (2023). The Effect of Seed Removal and Extraction Time on the Phenolic Profile of Plavac Mali Wine. Applied Sciences, 13(9), 5411. https://doi.org/10.3390/app13095411