Metaverse for Digital Anti-Aging Healthcare: An Overview of Potential Use Cases Based on Artificial Intelligence, Blockchain, IoT Technologies, Its Challenges, and Future Directions
Abstract
:1. Introduction
- We show the potential of the metaverse in supporting the digital anti-aging process and increasing the life expectancy of patients.
- We introduce a technological overview of healthcare services for the metaverse, with emphasis on the eventual opportunities.
- We highlight the possible challenges of the integration of healthcare services in the metaverse enviroment.
2. Related Work
3. Digital Anti-Aging Healthcare in the Metaverse
3.1. Chronic Disease Management in the Metaverse
- Holographic construction.
- Holographic simulation.
- Fusion of virtual and real.
- Virtual–real linkage.
3.2. Entertainment in the Metaverse as an Anti-Aging Strategy
3.3. Well-Being and Fitness for Anti-Aging Using the Metaverse
3.4. Digital Skin Management as a Digital Anti-Aging Strategy
3.5. Mental Health and the Metaverse
- Attention deficit hyperactivity disorder.
- Eating disorders
- Anxiety, phobias, and post-traumatic stress disorder
- Autism
- Alzheimer’s disease
- Stress and pain prescription
- Psychosis, delusions, and schizophrenia
3.6. Remote Assistance for Critical Patients within the Metaverse
4. Digital Anti-Aging Healthcare-Supporting Technologies in the Metaverse
4.1. Artificial Intelligence
4.2. Blockchain
4.3. Internet of Things
4.4. Edge/Cloud Computing
4.5. 5G/6G Network
4.6. Immersive Technology
4.7. Digital Twins
4.8. Human–Computer Interaction
4.9. Quantum Computing
4.10. Three-Dimensional Reconstruction
5. Metaverse Digital Anti-Aging Healthcare Challenges
5.1. Privacy and Security Concerns
5.2. Information Security Concerns
5.3. Standardization and Interoperability
5.4. Increasing the Metaverse’s Userbase
5.5. Limited Internet Access, Especially in Rural Areas
5.6. Lack of Knowledge of the Metaverse Domain in Technology
5.7. Expensive Equipment
5.8. Difficulties in Law and Regulation
6. Metaverse Anti-Aging and Healthcare Future Directions
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomason, J. MetaHealth-How will the Metaverse Change Health Care? J. Metaverse 2021, 1, 13–16. [Google Scholar]
- Lee, C.W. Application of Metaverse Service to Healthcare Industry: A Strategic Perspective. Int. J. Environ. Res. Public Health 2022, 19, 13038. [Google Scholar] [CrossRef] [PubMed]
- Mejia, J.M.R.; Rawat, D.B. Recent Advances in a Medical Domain Metaverse: Status, Challenges, and Perspective. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 357–362. [Google Scholar]
- Hopkins, J. Performs Its First Augmented Reality Surgeries in Patients. Available online: https://www.hopkinsmedicine.org/news/articles/johns-hopkins-performs-its-first-augmented-reality-surgeries-in-patients/ (accessed on 16 February 2021).
- Mozumder, M.A.I.; Athar, A.; Armand, T.P.T.; Sheeraz, M.M.; Uddin, S.M.I.; Kim, H.-C. Technological Roadmap of the Future Trend of Metaverse based on IoT, Blockchain, and AI Techniques in Metaverse Education. In Proceedings of the 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 19–22 February 2023. [Google Scholar]
- Yang, Y.; Siau, K.; Xie, W.; Sun, Y. Smart health intelligent healthcare systems in the metaverse, artificial intelligence, and data science era. J. Organ. End User Comput. (JOEUC) 2022, 34, 1–14. [Google Scholar]
- Yang, D.; Zhou, J.; Chen, R.; Song, Y.; Song, Z.; Zhang, X.; Wang, Q.; Wang, K.; Zhou, C.; Sun, J.; et al. Expert consensus on the metaverse in medicine. Clin. eHealth 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Damar, M. What the Literature on Medicine, Nursing, Public Health, Midwifery, and Dentistry Reveals: An Overview of the Rapidly Approaching Metaverse. J. Metaverse 2022, 2, 62–70. [Google Scholar] [CrossRef]
- Garavand, A.; Aslani, N. Metaverse phenomenon and its impact on health: A scoping review. Inform. Med. Unlocked 2022, 32, 101029. [Google Scholar] [CrossRef]
- Athar, A.; Ali, S.M.; Mozumder, M.A.I.; Ali, S.; Kim, H.-C. Applications and Possible Challenges of Healthcare Metaverse. In Proceedings of the 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 19–22 February 2023. [Google Scholar]
- Almarzouqi, A.; Aburayya, A.; Salloum, S.A. Prediction of User’s Intention to Use Metaverse System in Medical Education: A Hybrid SEM-ML Learning Approach. IEEE Access 2022, 10, 43421–43434. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Hu, L.; Wang, Y. The metaverse in education: Definition, framework, features, potential applications, challenges, and future research topics. Front. Psychol. 2022, 13, 1016300. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xie, L.; Liu, Y.; Li, K.; Jiang, B.; Lu, Y.; Yang, Y.; Yu, H.; Song, Y.; Bai, C.; et al. The metaverse in current digital medicine. Clin. eHealth 2022, 5, 52–57. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Obaidat, M.S.; Savaliya, D.; Sanghavi, S.; Tanwar, S.; Sadaun, B. Metaverse assisted Telesurgery in Healthcare 5.0: An interplay of Blockchain and Explainable AI. In Proceedings of the 2022 International Conference on Computer, Information and Telecommunication Systems (CITS), Piraeus, Greece, 13–15 July 2022; pp. 1–5. [Google Scholar]
- Yu, X.; Owens, D.; Khazanchi, D. Building Socioemotional Environments in Metaverses for Virtual Teams in Healthcare: A Conceptual Exploration. In Proceedings of the Health Information Science: First International Conference, HIS 2012, Beijing, China, 8–10 April 2012; Proceedings 1. Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Orchard, A.; O’Gorman, M.; La Vecchia, C.; Augmented, J.L. Augmented reality smart glasses in focus: A user group report. In Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar]
- Upadhyay, A.K.; Khandelwal, K. Metaverse: The future of immersive training. Strat. HR Rev. 2022, 21, 83–86. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, L.; Gao, F.; He, S.-J.; Zhao, H.-J.; Fang, Y.; Yang, J.-M.; An, Y.; Ye, Z.-W.; Dong, Z. Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm in Smart Healthcare. Curr. Med. Sci. 2021, 41, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.-G. A study on smart aging system for the elderly based on metaverse. J. Digit. Converg. 2022, 20, 261–268. [Google Scholar]
- Wiederhold, B.K. Metaverse games: A game changer for healthcare? Cyberpsychol. Behav. Soc. Netw. 2022, 25, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E. The Social Shaping of the Metaverse as an Alternative to the Imaginaries of Data-Driven Smart Cities: A Study in Science, Technology, and Society. Smart Cities 2022, 5, 832–874. [Google Scholar] [CrossRef]
- Li, C.-X.; Fei, W.-M.; Han, Y.; Ning, X.-L.; Wang, Z.-Y.; Li, K.-K.; Xue, K.; Xu, J.-K.; Yu, R.-X.; Meng, R.-S.; et al. Construction of an artificial intelligence system in dermatology: Effectiveness and consideration of Chinese Skin Image Database (CSID). Intell. Med. 2021, 1, 56–60. [Google Scholar] [CrossRef]
- Yang, J.O.; Lee, J.S. Utilization exercise rehabilitation using metaverse (vr·ar·mr·xr). Korean J. Sport Biomech. 2021, 31, 249–258. [Google Scholar]
- Ali, S.; Abdullah; Armand, T.P.T.; Athar, A.; Hussain, A.; Ali, M.; Yaseen, M.; Joo, M.-I.; Kim, H.-C. Metaverse in Healthcare Integrated with Explainable AI and Blockchain: Enabling Immersiveness, Ensuring Trust, and Providing Patient Data Security. Sensors 2023, 23, 565. [Google Scholar] [CrossRef]
- Benrimoh, D.; Chheda, F.D.; Margolese, H.C. The Best Predictor of the Future—The Metaverse, Mental Health, and Lessons Learned From Current Technologies. JMIR Ment. Health 2022, 9, e40410. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zeng, L.; Zhang, C.; Cheng, A.S. The metaverse in cancer care: Applications and challenges. Asia-Pac. J. Oncol. Nurs. 2022, 9, 100111. [Google Scholar] [CrossRef]
- Moon, I.; An, Y.; Min, S.; Park, C. Therapeutic Effects of Metaverse Rehabilitation for Cerebral Palsy: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 1578. [Google Scholar] [CrossRef]
- Thomason, J.M. Token Economies, and Chronic Diseases. Glob. Health J. 2022, 1, 13–16. [Google Scholar]
- Chronic Diseases. Available online: https://www.cdc.gov/chronicdisease/about/index.htm/ (accessed on 1 September 2022).
- Wu, C.-T.; Li, G.-H.; Huang, C.-T.; Cheng, Y.-C.; Chen, C.-H.; Chien, J.-Y.; Kuo, P.-H.; Kuo, L.-C.; Lai, F. Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study. JMIR mHealth uHealth 2021, 9, e22591. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Froiz-Míguez, I.; Blanco-Novoa, O.; Fraga-Lamas, P. Enabling the Internet of Mobile Crowdsourcing Health Things: A Mobile Fog Computing, Blockchain and IoT Based Continuous Glucose Monitoring System for Diabetes Mellitus Research and Care. Sensors 2019, 19, 3319. [Google Scholar] [CrossRef]
- Jourdan, T.; Debs, N.; Frindel, C. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review. Sensors 2021, 21, 4808. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.-E.; Anees, A.; Chen, C.; Li, S.; Xu, X.; Li, Z.; Xiao, Z.; Yang, Y.; Lei, X.; Ang, M.; et al. Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: A retrospective multicohort study. Lancet Digit. Health 2021, 3, e317–e329. [Google Scholar] [CrossRef] [PubMed]
- Armand; Theodore, T.P.; Mozumder, M.A.I.; Ali, S.; Amaechi, A.O.; Kim, H.-C. Developing a Low-Cost IoT-Based Remote Cardiovascular Patient Monitoring System in Cameroon. Healthcare 2023, 11, 199. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Rashid, M.; Barnes, S.; Hossain, M.S.; Hassanain, E.; Guizani, M. An IoT and Blockchain-Based Multi-Sensory In-Home Quality of Life Framework for Cancer Patients. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 2116–2121. [Google Scholar] [CrossRef]
- Patro, S.P.; Padhy, N.; Sah, R.D. Heart Rate Monitoring Using IoT and AI for Aged Person: A Survey. In The Role of IoT and Blockchain: Techniques and Applications; Apple Academic Press: New York, NY, USA, 2022; pp. 39–59. [Google Scholar]
- Giannakopoulou, K.-M.; Roussaki, I.; Demestichas, K. Internet of Things Technologies and Machine Learning Methods for Parkinson’s Disease Diagnosis, Monitoring and Management: A Systematic Review. Sensors 2022, 22, 1799. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Park, S.; Kwon, S.-H.; Ho, C.M.B.; Pyo, C.-S.; Lee, H. AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals. Appl. Sci. 2020, 10, 6791. [Google Scholar] [CrossRef]
- Cancer Care in India. Available online: https://health.economictimes.indiatimes.com/news/industry/ai-blockchain-and-iot-can-transform-cancer-care-in-india/89339690 (accessed on 4 February 2022).
- Top Predictions for How Healthcare Will Evolve in the Metaverse in the Next Decade. Available online: https://wi4.org/blog/top-predictions-for-how-healthcare-will-evolve-in-the-metaverse-in-the-next-decade/ (accessed on 23 May 2022).
- Build the Fitness Metaverse. Available online: https://fitness-metaverse.com/metaverse/ (accessed on 6 February 2022).
- Badiali, G.; Ferrari, V.; Cutolo, F.; Freschi, C.; Caramella, D.; Bianchi, A.; Marchetti, C. Augmented reality as an aid in maxillofacial surgery: Validation of a wearable system allowing maxillary repositioning. J. Cranio-Maxillofac. Surg. 2014, 42, 1970–1976. [Google Scholar] [CrossRef]
- Ali, S.; Aich, S.; Athar, A.; Kim, H. Medical Education, Training and Treatment Using XR in Healthcare. In Proceedings of the 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 19–22 February 2023. [Google Scholar]
- VR Therapy: The Metaverse Will Reshape Mental Health Therapy. Available online: https://www.01remote.com/vr-therapy-the-metaverse-will-reshape-mental-health-therapy/ (accessed on 10 July 2022).
- Usmani, S.S.; Sharath, M.; Mehendale, M. Future of mental health in the metaverse. Gen. Psychiatry 2022, 35, e100825. [Google Scholar] [CrossRef]
- Jagatheesaperumal, S.K.; Rahouti, M. Building Digital Twins of Cyber Physical Systems With Metaverse for Industry 5.0 and Beyond. IT Prof. 2022, 24, 34–40. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, T.; Wu, J.; Wang, Y.; Wan, S.; Zheng, J.; Fang, L.; Dai, Q. Artificial Intelligence for Metaverse: A Framework. CAAI Artif. Intell. Res. 2022, 1, 54–67. [Google Scholar] [CrossRef]
- Mozumder, M.A.I.; Sheeraz, M.; Athar, A.; Aich, S.; Kim, H.-C. Overview: Technology roadmap of the future trend of metaverse based on iot, blockchain, ai technique, and medical domain metaverse activity. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 13–16 February 2022; pp. 256–261. [Google Scholar]
- Huynh-The, T.; Pham, Q.-V.; Pham, X.-Q.; Nguyen, T.T.; Han, Z.; Kim, D.-S. Artificial intelligence for the metaverse: A survey. Eng. Appl. Artif. Intell. 2023, 117, 105581. [Google Scholar] [CrossRef]
- Schmitt, M. Big Data Analytics in the Metaverse: Business Value Creation with Artificial Intelligence and Data-Driven Decision Making. Available online: https://dx.doi.org/10.2139/ssrn.4385347 (accessed on 24 March 2023). [CrossRef]
- Liu, B.; Yin, G. Chinese document classification with bi-directional convolutional language model. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2020; ACM: New York, NY, USA, 2020; pp. 1785–1788. [Google Scholar]
- Athiwaratkun, B.; Stokes, J.W. Malware classification with LSTM and GRU language models and a character-level CNN. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2482–2486. [Google Scholar]
- Sharma, R.; Morwal, S.; Agarwal, B.; Chandra, R.; Khan, M.S. A deep neural network-based model for named entity recognition for Hindi language. Neural Comput. Appl. 2020, 32, 16191–16203. [Google Scholar] [CrossRef]
- Jin, N.; Wu, J.; Ma, X.; Yan, K.; Mo, Y. Multi-task learning model based on multi-scale CNN and LSTM for sentiment classi-fication. IEEE Access 2020, 8, 77060–77072. [Google Scholar] [CrossRef]
- Liu, D.; Fu, J.; Qu, Q.; Lv, J. BFGAN: Backward and Forward Generative Adversarial Networks for Lexically Constrained Sentence Generation. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 2350–2361. [Google Scholar] [CrossRef]
- Hu, Z.; Bulling, A.; Li, S.; Wang, G. FixationNet: Forecasting Eye Fixations in Task-Oriented Virtual Environments. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2681–2690. [Google Scholar] [CrossRef]
- Wu, P.; Ding, W.; You, Z.; An, P. Virtual Reality Video Quality Assessment Based on 3d Convolutional Neural Networks. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3187–3191. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, M.; Goodall, T.; Patney, A.; Bovik, A.C. Subjective and Objective Quality Assessment of 2D and 3D Foveated Video Compression in Virtual Reality. IEEE Trans. Image Process. 2021, 30, 5905–5919. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Hua, C.-H.; Huynh-The, T.; Bae, S.-H.; Lee, S. Cross-Attentional Bracket-shaped Convolutional Network for semantic image segmentation. Inf. Sci. 2020, 539, 277–294. [Google Scholar] [CrossRef]
- Liu, N.; Han, J.; Yang, M.-H. PiCANet: Pixel-Wise Contextual Attention Learning for Accurate Saliency Detection. IEEE Trans. Image Process. 2020, 29, 6438–6451. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, J.; Wang, X.; Gao, B.; Dellandrea, E.; Gaizauskas, R.; Chen, L. Visual and semantic knowledge transfer for large scale semisupervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 3045–3058. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Huang, C.-H.; Kang, L.-W. Multi-Scale Deep Residual Learning-Based Single Image Haze Removal via Image Decomposition. IEEE Trans. Image Process. 2019, 29, 3153–3167. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. An Improved Enhancement Algorithm Based on CNN Applicable for Weak Contrast Images. IEEE Access 2020, 8, 8459–8476. [Google Scholar] [CrossRef]
- Mei, S.; Jiang, R.; Li, X.; Du, Q. Spatial and Spectral Joint Super-Resolution Using Convolutional Neural Network. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 4590–4603. [Google Scholar] [CrossRef]
- Chen, K.; Gong, S.; Xiang, T. Human pose estimation using structural support vector machines. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 846–851. [Google Scholar]
- Rogez, G.; Weinzaepfel, P.; Schmid, C. LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1146–1161. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, S.; Bhatia, Q.; Patel, P.; Kumari, A.; Singh, P.K.; Hong, W.-C. Machine Learning Adoption in Blockchain-Based Smart Applications: The Challenges, and a Way Forward. IEEE Access 2019, 8, 474–488. [Google Scholar] [CrossRef]
- Khan, M.A.; Abbas, S.; Rehman, A.; Saeed, Y.; Zeb, A.; Uddin, M.I.; Nasser, N.; Ali, A. A Machine Learning Approach for Blockchain-Based Smart Home Networks Security. IEEE Netw. 2020, 35, 223–229. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, H.; Zeng, Y.; Cai, W. Hybrid Blockchain-Based Resource Trading System for Federated Learning in Edge Computing. IEEE Internet Things J. 2020, 8, 2252–2264. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Zhang, P.; Zhou, X.; Shao, X.; Pu, G.; Zhang, Y. Blockchain and federated learning for collaborative in-trusion detection in vehicular edge computing. IEEE Trans. Veh. Technol. 2021, 70, 6073–6084. [Google Scholar] [CrossRef]
- Maheswari, D.; Ndruru, F.B.F.; Rejeki, D.S.; Moniaga, J.V.; Jabar, B.A. Systematic Literature Review on The Usage of IoT in The Metaverse to Support The Education System. In Proceedings of the 2022 5th International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 August 2022; pp. 307–310. [Google Scholar] [CrossRef]
- Lee, L.-H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv 2021, arXiv:2110.05352. [Google Scholar]
- Warke, V.; Kumar, S.; Bongale, A.; Kotecha, K. Sustainable Development of Smart Manufacturing Driven by the Digital Twin Framework: A Statistical Analysis. Sustainability 2021, 13, 10139. [Google Scholar] [CrossRef]
- Ning, H.; Wang, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A Survey on Metaverse: The State-of-the-art, Technologies, Applications, and Challenges. arXiv 2021, arXiv:2111.09673. [Google Scholar]
- Dhelim, S.; Kechadi, T.; Chen, L.; Aung, N.; Ning, H.; Atzori, L. Edge-enabled metaverse: The convergence of metaverse and mobile edge computing. arXiv 2022, arXiv:2205.02764. [Google Scholar]
- How Edge Computing Will Support the Metaverse. Available online: http://www.techrepublic.com/article/edge-computing-supports-metaverse/ (accessed on 4 October 2022).
- Siniarski, B.; De Alwis, C.; Yenduri, G.; Huynh-The, T.; GÜr, G.; Gadekallu, T.R.; Liyanage, M. Need of 6G for the Metaverse Realization. arXiv 2022, arXiv:2301.03386. [Google Scholar]
- Luo, C.; Ji, J.; Wang, Q.; Chen, X.; Li, P. Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach. IEEE Trans. Netw. Sci. Eng. 2018, 7, 227–236. [Google Scholar] [CrossRef]
- Abdelmaged, M.A.M. Implementation of Virtual Reality in Healthcare, Entertainment, Tourism, Education, and Retail Sectors. 2021. Available online: https://mpra.ub.uni-muenchen.de/110491/ (accessed on 24 March 2023).
- Qu, Z.; Lau, C.W.; Simoff, S.J.; Kennedy, P.J.; Nguyen, Q.V.; Catchpoole, D.R. Review of Innovative Immersive Technologies for Healthcare Applications. Innov. Digit. Health Diagn. Biomark. 2022, 2, 27–39. [Google Scholar] [CrossRef]
- Hopkins, E. Virtual Commerce in a Decentralized Blockchain-based Metaverse: Immersive Technologies, Computer Vision Algorithms, and Retail Business Analytics. Linguist. Philos. Investig. 2022, 21, 203–218. [Google Scholar]
- Metaverse in Operating Room is Changing Medicine Rapidly. Available online: http://www.koreabiomed.com/news/articleView.html?idxno=11477 (accessed on 26 June 2022).
- Erol, T.; Mendi, A.F.; Doğan, D. The digital twin revolution in healthcare. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–7. [Google Scholar]
- Boulos, M.N.K.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef]
- Darvishi, H.; Ciuonzo, D.; Eide, E.R.; Rossi, P.S. Sensor-Fault Detection, Isolation and Accommodation for Digital Twins via Modular Data-Driven Architecture. IEEE Sens. J. 2020, 21, 4827–4838. [Google Scholar] [CrossRef]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Sun, W.; Lei, S.; Wang, L.; Liu, Z.; Zhang, Y. Adaptive federated learning and digital twin for industrial internet of things. IEEE Trans. Ind. Inform. 2021, 17, 5605–5614. [Google Scholar] [CrossRef]
- Blandford, A. HCI for health and wellbeing: Challenges and opportunities. Int. J. Hum.-Comput. Stud. 2019, 131, 41–51. [Google Scholar] [CrossRef]
- Quantum Computing and Healthcare: Learn More about These Applications. Available online: https://www.hitechnectar.com/blogs/quantum-computing-and-healthcare/ (accessed on 3 March 2023).
- He, Y.-B.; Bai, L.; Aji, T.; Jiang, Y.; Zhao, J.-M.; Zhang, J.-H.; Shao, Y.-M.; Liu, W.-Y.; Wen, H. Application of 3D reconstruction for surgical treatment of hepatic alveolar echinococcosis. World J. Gastroenterol. 2015, 21, 10200–10207. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Dong, J.; Qian, X. Med-3d: 3d reconstruction of medical images based on struc-ture-from-motion via transfer learning. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021. [Google Scholar]
- Marzaleh, M.A.; Peyravi, M.; Shaygani, F. A revolution in health: Opportunities and chal-lenges of the Metaverse. Excli. J. 2022, 21, 791. [Google Scholar]
- Polona, C.; André, M.; Maria, N. Metaverse: Opportunities, Risks and Policy Implications, EPRS: European Parliamentary Research Service. Belgium. 2022. Available online: https://policycommons.net/artifacts/2476871/metaverse/3498933/ (accessed on 19 March 2023).
- Bhugaonkar, K.; Bhugaonkar, R.; Masne, N. The Trend of Metaverse and Augmented & Virtual Reality Extending to the Healthcare System. Cureus 2022, 14, e29071. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A Survey on Metaverse: Fundamentals, Security, and Privacy. IEEE Commun. Surv. Tutor. 2022, 25, 319–352. [Google Scholar] [CrossRef]
- Accessing the Growing Involvement of Metaverse in Healthcare. Available online: https://www.delveinsight.com/blog/metaverse-in-healthcare#PrivacyandSecurityintheMetaverse (accessed on 17 April 2022).
- Singh, G.; Casson, R.; Chan, W. The potential impact of 5G telecommunication technology on ophthalmology. Eye 2021, 35, 1859–1868. [Google Scholar] [CrossRef]
- Gunasekeran, D.V.; Wong, T.Y. Artificial Intelligence in Ophthalmology in 2020: A Technology on the Cusp for Translation and Implementation. Asia-Pac. J. Ophthalmol. 2020, 9, 61–66. [Google Scholar] [CrossRef]
- Beede, E.; Baylor, E.; Hersch, F.; Iurchenko, A.; Wilcox, L.; Ruamviboonsuk, P.; Vardoulakis, L.M. A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems: Asso-ciation for Computing Machinery, Honolulu, HI, USA, 25–30 April 2020; pp. 1–12. [Google Scholar]
- Chávez-Santiago, R.; Szydełko, M.; Kliks, A.; Foukalas, F.; Haddad, Y.; Nolan, K.E.; Kelly, M.Y.; Masonta, M.T.; Balasingham, I. 5G: The Convergence of Wireless Communications. Wirel. Pers. Commun. 2015, 83, 1617–1642. [Google Scholar] [CrossRef]
- Saunders, J. The Transformational Impact of 5G; Proceedings of a Workshop—In Brief; National Academies of Sciences, Engineeing, and Medicine; Policy and Global Affairs; Government-University-Industry Research Roundtable; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Li, J.-P.O.; Liu, H.; Ting, D.S.J.; Jeon, S.; Chan, R.V.P.; Kim, J.E.; Sim, D.A.; Thomas, P.B.M.; Lin, H.; Chen, Y.; et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog. Retin. Eye Res. 2021, 82, 100900. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, B.; Nadri, H.; Afshar, H.L.; Timpka, T. A Systematic Review of the Technology Acceptance Model in Health Informatics. Appl. Clin. Inform. 2018, 9, 604–634. [Google Scholar] [CrossRef] [PubMed]
- Gunasekeran, D.V. Technology and chronic disease management. Lancet Diabetes Endocrinol. 2018, 6, 91. [Google Scholar] [CrossRef]
- Gunasekeran, D.V.; Tseng, R.M.W.W.; Tham, Y.-C.; Wong, T.Y. Applications of digital health for public health responses to COVID-19: A systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digit. Med. 2021, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- How Metaverse Is Set to Transform the Healthcare Dynamics? Available online: https://www.delveinsight.com/blog/metaverse-in-healthcare (accessed on 13 April 2022).
- Metaverse in Healthcare–New Era Is Coming True. Available online: https://healthcarebusinessclub.com/articles/healthcare-provider/technology/metaverse-in-healthcare/ (accessed on 7 January 2022).
- The Metaverse: What Are the Legal Implications? Available online: https://www.cliffordchance.com/briefings/2022/02/the-metaverse--what-are-the-legal-implications-.html (accessed on 11 February 2022).
- Skalidis, I.; Muller, O.; Fournier, S. CardioVerse: The cardiovascular medicine in the era of Metaverse. Trends Cardiovasc. Med. 2022, in press. [CrossRef]
- Tan, T.F.; Li, Y.; Lim, J.S.; Gunasekeran, D.V.; Teo, Z.L.; Ng, W.Y.; Ting, D.S. Metaverse and Virtual Health Care in Oph-thalmology: Opportunities and Challenges. Asia-Pac. J. Ophthalmol. 2022, 11, 237–246. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tosevska, A.; Klager, E.; Eibensteiner, F.; Laxar, D.; Stoyanov, J.; Glisic, M.; Zeiner, S.; Kulnik, S.T.; Crutzen, R.; et al. Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature. J. Med. Internet Res. 2021, 23, e25499. [Google Scholar] [CrossRef]
SL | Description of Study | Technologies | Use Case | Reference |
---|---|---|---|---|
1 | User-customized smart aging system by combining AI and the metaverse | IoT, AI, and VR | Smart aging system | [19] |
2 | Entertainment in the metaverse as an anti-aging strategy | AR | Virtual coaching for anti-aging treatment | [20] |
3 | Social networks and communities as an anti-aging strategy | Metaverse social applications | Share information and resources related to anti-aging treatments | [21] |
4 | Skincare effectiveness and consideration | AI medical analysis | Skincare treatment | [22] |
5 | Fitness for anti-aging using the metaverse | VR, AR, MR, XR | Fitness rehabilitation | [23] |
6 | Uses of telemedicine within the metaverse for anti-aging treatment | Explainable AI, MR | Skin treatment | [24] |
7 | Mental health in the metaverse | Virtual reality | Mental health | [25] |
8 | The metaverse in cancer care | VR, AR | Cancer care | [26] |
9 | Therapeutic effects of metaverse rehabilitation | Avatar AR, VR | Therapeutic Rehabilitation | [27] |
10 | Token economies and chronic disease | BC | Chronic disease | [28] |
SN | Task | AI | IoT | BC | Reference |
---|---|---|---|---|---|
1 | Acute exacerbation of COPD detection | ✓ | ✓ | ✕ | [30] |
2 | Diabetes monitoirng assited by BC and IoT | ✕ | ✓ | ✓ | [31] |
3 | Validation of wearable sensors for gait monitoring in patients | ✓ | ✓ | ✕ | [32] |
4 | Retinal photograph analysis and blockchain platform to facilitate AI medical research | ✓ | ✕ | ✓ | [33] |
5 | Remote patient monitoring for cardiovascular diseases | ✕ | ✓ | ✕ | [34] |
6 | Quality of life framework for cancer patients | ✕ | ✓ | ✓ | [35] |
7 | Heart rate monitoring older people | ✓ | ✓ | ✕ | [36] |
8 | Parkinson’s disease diagnosis, monitoring, and management | ✓ | ✓ | ✓ | [37] |
9 | Stroke disease prediction system | ✓ | ✕ | ✕ | [38] |
10 | Cancer care in India | ✓ | ✓ | ✓ | [39] |
Features and Needs | 5G and 6G Ecosystem Potential Solutions |
---|---|
Global access to every multiverse that makes the metaverse |
|
Lightweight and accessible XR devices for the metaverse experience |
|
Edge-Cloud and Cloud capabilities |
|
Consistent interfaces |
|
Fast accesible packages for developers |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozumder, M.A.I.; Armand, T.P.T.; Imtiyaj Uddin, S.M.; Athar, A.; Sumon, R.I.; Hussain, A.; Kim, H.-C. Metaverse for Digital Anti-Aging Healthcare: An Overview of Potential Use Cases Based on Artificial Intelligence, Blockchain, IoT Technologies, Its Challenges, and Future Directions. Appl. Sci. 2023, 13, 5127. https://doi.org/10.3390/app13085127
Mozumder MAI, Armand TPT, Imtiyaj Uddin SM, Athar A, Sumon RI, Hussain A, Kim H-C. Metaverse for Digital Anti-Aging Healthcare: An Overview of Potential Use Cases Based on Artificial Intelligence, Blockchain, IoT Technologies, Its Challenges, and Future Directions. Applied Sciences. 2023; 13(8):5127. https://doi.org/10.3390/app13085127
Chicago/Turabian StyleMozumder, Md Ariful Islam, Tagne Poupi Theodore Armand, Shah Muhammad Imtiyaj Uddin, Ali Athar, Rashedul Islam Sumon, Ali Hussain, and Hee-Cheol Kim. 2023. "Metaverse for Digital Anti-Aging Healthcare: An Overview of Potential Use Cases Based on Artificial Intelligence, Blockchain, IoT Technologies, Its Challenges, and Future Directions" Applied Sciences 13, no. 8: 5127. https://doi.org/10.3390/app13085127
APA StyleMozumder, M. A. I., Armand, T. P. T., Imtiyaj Uddin, S. M., Athar, A., Sumon, R. I., Hussain, A., & Kim, H.-C. (2023). Metaverse for Digital Anti-Aging Healthcare: An Overview of Potential Use Cases Based on Artificial Intelligence, Blockchain, IoT Technologies, Its Challenges, and Future Directions. Applied Sciences, 13(8), 5127. https://doi.org/10.3390/app13085127