DB-Net: Detecting Vehicle Smoke with Deep Block Networks
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Image Process Based Methods
2.2. Deep-Learning-Based Methods
3. Vehicle Smoke Dataset
3.1. Dataset Collection and Annotation
3.2. Dataset Comparison
4. Method
4.1. Problem Formulation
4.2. DB-Net
4.3. Coarse-to-Fine Training
5. Experiments
5.1. Implementation Details and Evaluation Metrics
5.2. Ablation Study
5.3. Performance Comparisons
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gakenheimer, R. Urban mobility in the developing world. Transp. Res. Part A Policy Pract. 1999, 33, 671–689. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total. Environ. 2013, 450, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, S.; Khanna, P.; Ojha, A. A survey on vision-based outdoor smoke detection techniques for environmental safety. ISPRS J. Photogramm. Remote Sens. 2022, 185, 158–187. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, Y.; Zhang, Q.; Jia, Y.; Wang, J. Smoke detection in video sequences based on dynamic texture using volume local binary patterns. Ksii Trans. Internet Inf. Syst. 2017, 11, 5522–5536. [Google Scholar]
- Yuan, F.; Xia, X.; Shi, J.; Zhang, L.; Huang, J. Learning multi-scale and multi-order features from 3D local differences for visual smoke recognition. Inf. Sci. 2018, 468, 193–212. [Google Scholar] [CrossRef]
- Yuan, F. A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with AdaBoost for video smoke detection. Pattern Recognit. 2012, 45, 4326–4336. [Google Scholar] [CrossRef]
- Yuan, F.; Shi, J.; Xia, X.; Huang, Q.; Li, X. Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition. IET Comput. Vis. 2019, 13, 178–187. [Google Scholar] [CrossRef]
- Dimitropoulos, K.; Barmpoutis, P.; Grammalidis, N. Higher order linear dynamical systems for smoke detection in video surveillance applications. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 1143–1154. [Google Scholar] [CrossRef]
- Tao, H. Detecting smoky vehicles from traffic surveillance videos based on dynamic features. Appl. Intell. 2020, 50, 1057–1072. [Google Scholar] [CrossRef]
- Zhao, L.; Luo, Y.M.; Luo, X.Y. Based on dynamic background update and dark channel prior of fire smoke detection algorithm. Appl. Res. Comput. 2017, 34, 957–960. [Google Scholar]
- Appana, D.K.; Islam, R.; Khan, S.A.; Kim, J.M. A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems. Inf. Sci. 2017, 418, 91–101. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Lateef, F.; Ruichek, Y. Survey on semantic segmentation using deep learning techniques. Neurocomputing 2019, 338, 321–348. [Google Scholar] [CrossRef]
- Tao, H.; Lu, X. Smoke vehicle detection based on robust codebook model and robust volume local binary count patterns. Image Vis. Comput. 2019, 86, 17–27. [Google Scholar] [CrossRef]
- Tao, H.; Lu, X. Smoke vehicle detection based on multi-feature fusion and hidden Markov model. J. Real-Time Image Process. 2020, 17, 745–758. [Google Scholar] [CrossRef]
- Wang, X.; Kang, Y.; Cao, Y. SDV-net: A two-stage Convolutional neural network for smoky diesel vehicle detection. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 8611–8616. [Google Scholar]
- Zhou, J.; Qian, S.; Yan, Z.; Zhao, J.; Wen, H. ESA-Net: A Network with Efficient Spatial Attention for Smoky Vehicle Detection. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Wang, C.; Wang, H.; Yu, F.; Xia, W. A high-precision fast smoky vehicle detection method based on improved Yolov5 network. In Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID), Guangzhou, China, 28–30 May 2021; pp. 255–259. [Google Scholar]
- Yuan, F.; Zhang, L.; Xia, X.; Huang, Q.; Li, X. A gated recurrent network with dual classification assistance for smoke semantic segmentation. IEEE Trans. Image Process. 2021, 30, 4409–4422. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Yuan, F.; Zhang, L.; Xia, X.; Wan, B.; Huang, Q.; Li, X. Deep smoke segmentation. Neurocomputing 2019, 357, 248–260. [Google Scholar] [CrossRef]
- Sheng, C.; Hu, B.; Meng, F.; Yin, D. Lightweight dual-branch network for vehicle exhausts segmentation. Multimed. Tools Appl. 2021, 80, 17785–17806. [Google Scholar] [CrossRef]
- Yuan, F.; Shi, J.; Xia, X.; Fang, Y.; Fang, Z.; Mei, T. High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inf. Sci. 2016, 372, 225–240. [Google Scholar] [CrossRef]
- Zhang, Q.x.; Lin, G.h.; Zhang, Y.m.; Xu, G.; Wang, J.j. Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images. Procedia Eng. 2018, 211, 441–446. [Google Scholar] [CrossRef]
- Peng, X.; Fan, X.; Wu, Q.; Zhao, J.; Gao, P. Video-based Smoky Vehicle Detection with A Coarse-to-Fine Framework. arXiv 2022, arXiv:2207.03708. [Google Scholar]
- Holder, C.J.; Shafique, M. On Efficient Real-Time Semantic Segmentation: A Survey. arXiv 2022, arXiv:2206.08605. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
Database | Type | Scenario | Total Samples | Annotation | Available |
---|---|---|---|---|---|
VSD [23] | image | wild | 24,217 | category | public |
RF dataset [24] | image | wild | 12,620 | bounding boxes | public |
Synthetic-Smoke [21] | image | - | 3000 | pixel-level | private |
LaSSoV-video [25] | video | road vehicle | 163 | temporal segments | public |
LaSSoV [25] | image | road vehicle | 75,000 | bounding boxes | public |
PoVSSeg (Ours) | image | road vehicle | 3962 | polygon | public |
Structure | Training Strategy | Evaluation | ||||||
---|---|---|---|---|---|---|---|---|
Aggregation Branch | Fine | Coarse | Fine-to-Coarse | Coarse-to-Fine | mIoU(%) | Parameters | ||
Background | Smoke | Global | ||||||
✔ | 99.21 | 36.25 | 67.73 | 8,545,346 | ||||
✔ | 98.84 | 17.58 | 58.21 | - | ||||
✔ | 98.84 | 17.93 | 58.38 | - | ||||
✔ | 99.16 | 40.31 | 69.73 | - | ||||
✔ | ✔ | 99.18 | 36.99 | 68.08 | 8,547,016 | |||
✔ | ✔ | 98.87 | 24.28 | 61.57 | - | |||
✔ | ✔ | 98.91 | 24.95 | 61.93 | - | |||
✔ | ✔ | 99.17 | 43.12 | 71.14 | - |
Method | mIoU(%) | Parameters (M) | FPS | ||
---|---|---|---|---|---|
Background | Smoke | Global | |||
PSP-Net | 99.1 | 25.19 | 62.14 | 24.31 | 23.55 |
FCN-32s | 99.2 | 34.26 | 66.73 | 23.51 | 24.35 |
PAN | 99.24 | 42.63 | 70.94 | 24.26 | 23.89 |
DeepLab-v3 | 99.34 | 49.54 | 74.44 | 39.36 | 13.45 |
DB-Net(Ours) | 99.17 | 43.12 | 71.14 | 8.54 | 59.12 |
Method | Scene 1 | Scene 2 | Scene 3 | Scene 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Recall | Precision | F1 | Recall | Precision | F1 | Recall | Precision | F1 | Recall | Precision | F1 | |
R-VLBC | 0.8155 | 0.4045 | 0.5407 | 0.8021 | 0.3942 | 0.5285 | 0.9259 | 0.1663 | 0.2819 | 0.8381 | 0.3038 | 0.4459 |
PSP-Net | 0.4234 | 0.4594 | 0.4407 | 0.2212 | 0.4949 | 0.3058 | 0.7451 | 0.1436 | 0.2408 | 0.7743 | 0.4133 | 0.5389 |
DeepLab-v3 | 0.8235 | 0.2384 | 0.3698 | 0.826 | 0.2518 | 0.3859 | 0.9976 | 0.0631 | 0.1186 | 0.9805 | 0.1379 | 0.2418 |
FCN-32s | 0.4791 | 0.4961 | 0.4874 | 0.3491 | 0.625 | 0.4479 | 0.8413 | 0.1525 | 0.2582 | 0.7061 | 0.5129 | 0.5942 |
PAN | 0.6638 | 0.4617 | 0.5446 | 0.7016 | 0.3999 | 0.5094 | 0.9013 | 0.1254 | 0.2202 | 0.8685 | 0.2649 | 0.406 |
DB-Net(Ours) | 0.6161 | 0.6283 | 0.6221 | 0.6341 | 0.5864 | 0.6093 | 0.9242 | 0.1155 | 0.2053 | 0.8246 | 0.3895 | 0.5291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Peng, X. DB-Net: Detecting Vehicle Smoke with Deep Block Networks. Appl. Sci. 2023, 13, 4941. https://doi.org/10.3390/app13084941
Chen J, Peng X. DB-Net: Detecting Vehicle Smoke with Deep Block Networks. Applied Sciences. 2023; 13(8):4941. https://doi.org/10.3390/app13084941
Chicago/Turabian StyleChen, Junyao, and Xiaojiang Peng. 2023. "DB-Net: Detecting Vehicle Smoke with Deep Block Networks" Applied Sciences 13, no. 8: 4941. https://doi.org/10.3390/app13084941
APA StyleChen, J., & Peng, X. (2023). DB-Net: Detecting Vehicle Smoke with Deep Block Networks. Applied Sciences, 13(8), 4941. https://doi.org/10.3390/app13084941