The Plasma Ozonizer System for Mangosteen Storage Container to Preserve the Quality of Mangosteen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plasma Ozonizer System for Storage Room Prototype
2.3. Treatment with Ozone and Storage
2.4. Assessment of the Quality and Sensory Evaluation
2.5. Statistics
3. Results
3.1. Characteristics of the Ozone Production System
3.2. Ethylene Concentration of Mangosteen Fruit
3.3. Assessment of the Quality and Sensory Evaluation
4. Discussion
4.1. Characteristics of the Ozone Production System
4.2. Ethylene Concentration of Mangosteen Fruit
4.3. Assessment of the Quality and Sensory Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regrimes and single filaments. Plasma Sour. Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Pironti, C.; Moccia, G.; Motta, O.; Boccia, G.; Franci, G.; Santoro, E.; Capunzo, M.; De Caro, F. The influence of microclimate conditions on ozone disinfection efficacy in working places. Environ. Sci. Pollut. Res. 2021, 28, 64687–64692. [Google Scholar] [CrossRef]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone treatments for preserving fresh vegetables quality: A critical review. Foods 2021, 10, 605. [Google Scholar] [CrossRef]
- Vitali, G.; Valdenassi, L. Use of ozone in water, agriculture and zootechnics: Relationships between dysbiosis and mental disorders. Ozone Ther. 2019, 4, 8182. [Google Scholar] [CrossRef]
- Díaz-López, M.; Siles, J.A.; Ros, C.; Bastida, F.; Nicolás, E. The effects of ozone treatments on the agro-physiological parameters of tomato plants and the soil microbial community. Sci. Total Environ. 2022, 812, 151429. [Google Scholar] [CrossRef] [PubMed]
- John, A.; Brookes, A.; Carra, I.; Jefferson, B.; Jarvis, P. Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1561–1603. [Google Scholar] [CrossRef]
- Re, L. Ozone in medicine: A few points of reflections. Front. Physiol. 2022, 13, 842229. [Google Scholar] [CrossRef]
- Aizat, W.M.; Ahmad-Hashim, F.H.; Syed, S.N. Valorization of mangosteen, “The Queen of Fruits”, and new advances in postharvest and in food and engineering applications: A review. J. Adv. Res. 2019, 20, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Ketsa, S.; Paull, R.E. 1—Mangosteen (Garcinia mangostana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits, 1st ed.; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; Volume 4, pp. 1–32. [Google Scholar]
- Marzaimi, I.N.; Aizat, W.M. Chapter 17—Current Review on Mangosteen Usages in Antiinflammation and Other Related Disorders. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 273–289. [Google Scholar]
- Lerslerwong, L.; Rugkong, A.; Imsabai, W.; Ketsa, S. The harvest period of mangosteen fruit can be extended by chemical control of ripening—A proof of concept study. Sci. Hort. 2013, 157, 13–18. [Google Scholar] [CrossRef]
- Palapol, Y.; Ketsa, S.; Stevenson, D.; Cooney, J.M.; Allan, A.C.; Ferguson, I.B. Colour development and quality of mangosteen (Garcinia mangostana L.) fruit ripening and after harvest. Postharv. Biol. Technol. 2009, 51, 349–353. [Google Scholar] [CrossRef]
- Zhang, H.; Han, M.; Xie, Y.; Wang, M.; Cao, C. Application of ethylene-regulating packaging in post-harvest fruits and vegetables storage: A review. Packag. Technol. Sci. 2022, 35, 461–471. [Google Scholar] [CrossRef]
- Piriyavinit, P.; Ketsa, S.; van Doorn, W.G. 1-MCP extends the storage and shelf life of mangosteen (Garcinia mangostana L.) fruit. Postharv. Biol. Technol. 2011, 61, 15–20. [Google Scholar] [CrossRef]
- Herawati, H.; Winarti, C.; Setyabudi, D.A.; Wahyuningsih, K. Effect of Hormone Treatment, Coating Material and Ethylene Absorber on the Shelf Life of Mangosteen. IOP Conf. Ser. Earth Environ. Sci. 2019, 309, 012019. [Google Scholar] [CrossRef]
- Goffi, V.; Zampella, L.; Forniti, R.; Petriccione, M.; Botondi, R. Effects of Ozone Postharvest Treatment on Physicochemical and Qualitative Traits of Actinidia Chinensis ‘Soreli’ during Cold Storage. J. Sci. Food Agric. 2019, 99, 5654–5661. [Google Scholar] [CrossRef]
- Panou, A.A.; Akrida-Demertzi, K.; Demertzis, P.; Riganakos, K.A. Effect of Gaseous Ozone and Heat Treatment on Quality and Shelf Life of Fresh Strawberries during Cold Storage. Int. J. Fruit Sci. 2021, 21, 218–231. [Google Scholar] [CrossRef]
- Ali, A.; Ong, M.K.; Forney, C.F. Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chem. 2014, 142, 19–26. [Google Scholar] [CrossRef]
- Minas, I.S.; Tanou, G.; Krokida, A.; Karagiannis, E.; Belghazi, M.; Vasilakakis, M.; Papadopoulou, K.K.; Molassiotis, A. Ozone-induced inhibition of kiwifruit ripening is amplified by 1-methylcyclopropene and reversed by exogenous ethylene. BMC Plant Biol. 2018, 18, 358. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, O.P.; Raju, P.S.; Ravi, N.; Singh, A.; Bawa, A.S. Effectiveness of ozone in combination with controlled atmosphere on quality characteristics including lignification of carrot sticks. J. Food Eng. 2011, 102, 43–48. [Google Scholar] [CrossRef]
- Renumarn, P.; Srilaong, V.; Uthairatanakij, A.; Kanlayanarat, S.; Jitareerat, P. Contact Time of Ozonated Water on Microbial Populations and Quality Changes of Fresh-Cut Broccoli Florets. Acta Hortic. 2013, 989, 177–183. [Google Scholar] [CrossRef]
- Aafia, S.; Rouf, A.; Kanojia, V.; Ayaz, Q. Ozone Treatment in Prolongation of Shelf Life of Temperate and Tropical Fruits. Int. J. Pure Appl. Biosci. 2018, 6, 298–303. [Google Scholar] [CrossRef]
- Miller, F.A.; Silva, C.L.M.; Brandao, T.R.S. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Eng. Rev. 2013, 5, 77–106. [Google Scholar] [CrossRef]
- Gao, C.C.; Lin, Q.; Dong, C.H.; Ji, H.P.; Yu, J.Z.; Chen, C.K.; Zhu, Z.Q.; Ban, Z.; Zhang, N.; Bao, Y.Y. Effects of ozone concentration on the postharvest quality and microbial diversity of Muscat Hamburg grapes. R. Soc. Chem. 2020, 10, 9037–9045. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leong, J.L.K.; Sun, M.; Jing, L.; Zhang, Y.; Wang, T.; Wang, S.; Huang, D. Quantitative Determination of Ethylene Using a Smartphone-Based Optical Fiber Sensor (SOFS) Coupled with Pyrene-Tagged Grubbs Catalyst. Biosensors 2022, 12, 316. [Google Scholar] [CrossRef]
- Fan, X.; Sokorai, K.J.B.; Gurtler, J.B. Advanced oxidation process for the inactivation of Salmonella typhimurium on tomatoes by combination of gaseous ozone and aerosolized hydrogen peroxide. Int. J. Food Microbiol. 2020, 312, 108387. [Google Scholar] [CrossRef]
- Basel, Y.P.; Acharya, G.; Khadka, P.B.; Sharma, S.; Shrestha, R.; Subedi, D.P. Analysis of Ozone Generated in an Atmospheric Pressure Co-axial Dielectric Barrier Discharge (APDBD). J. Emerg. Technol. Innovat. Res. 2019, 6, 88–92. [Google Scholar]
- Montazersadgh, F.; Wright, A.; Ren, J.; Shaw, A.; Neretti, G.; Bandulasena, H.; Iza, F. Influence of the On-time on the Ozone Production in Pulsed Dielectric Barrier Discharges. Plasma 2019, 2, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Triardianto, D.; Bintoro, N. The Effect of Gaseous Ozone Exposure and Storage Room Temperatures on Ethylene Production, Peel Colour, and Total Soluble Solid Content of Banana Fruit (Musa acuminata) During Storage. IOP Conf. Ser. Earth Environ. Sci. 2021, 828, 012044. [Google Scholar] [CrossRef]
- Cao, S.; Meng, L.; Ma, C.; Ba, L.; Lei, J.; Ji, N.; Wang, R. Effect of ozone treatment on physicochemical parameters and ethylene biosynthesis inhibition in Guichang Kiwifruit. Food Sci. Technol. 2022, 42, 64820. [Google Scholar] [CrossRef]
- Bailey, P.S. Ozonation in Organic Compounds. In Olefinic Compounds; Academic Press, Inc.: New York, NY, USA, 1978; Volume I, pp. 227–228. [Google Scholar]
- Wang, Y.W.; Acharya, T.P.; Malladi, A.; Tsai, H.J.; NeSmith, D.S.; Doyle, J.W.; Nambeesan, S.U. Atypical Climacteric and Functional Ethylene Metabolism and Signaling During Fruit Ripening in Blueberry (Vaccinium sp.). Front. Plant Sci. 2022, 13, 932642. [Google Scholar] [CrossRef]
- Minas, I.S.; Tanou, G.; Belghazi, M.; Job, D.; Manganaris, G.A.; Molassiotis, A.; Vasilakakis, M. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. J. Exp. Bot. 2012, 63, 2449–2464. [Google Scholar] [CrossRef]
- Toti, M.; Carboni, C.; Botondi, R. Postharvest gaseous ozone treatment enhances quality parameters and delays softening in cantaloupe melon during storage at 6 degrees C. J. Sci. Food Agric. 2018, 98, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Pang, J.; Li, S.; Xiong, B.; Cai, L.G. Application of new physical storage technology in fruit and vegetable industry. Afr. J. Biotechnol. 2012, 11, 6718–6722. [Google Scholar]
- Sachadyn-Król, M.; Agriopoulou, S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules 2020, 25, 2416. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.L.; Aiamla-or, S.; Srilaong, V.; Jitareerat, P.; Wongs-Aree, C.; Uthairatanakij, A. Ozone fumigation to delay ripening of mango ‘Nam Dok Mai No. 4’. Acta Hortic. 2015, 1088, 103–106. [Google Scholar] [CrossRef]
- Nadas, A.; Olmo, M.; Garcia, J.M. Growth of Botrytis cinerea and strawberry quality in ozone-enriched atmospheres. J. Food Sci. 2003, 68, 1798–1802. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef] [PubMed]
Treatment | Weight Loss Percentage | Pericarp Firmness (N) | Fruit Pericarp Color | Flavor | Overall Acceptance |
---|---|---|---|---|---|
Control Ozone | 4.58 ± 0.43 a | 17.45 ± 1.63 a | 3.64 ± 0.38 a | 3.37 ± 0.97 a | 3.62 ± 0.27 a |
1.24 ± 0.14 b | 28.63 ± 2.44 b | 4.72 ± 0.15 b | 4.58 ± 0.26 b | 4.65 ± 0.18 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chankuson, P.; Chumsri, P. The Plasma Ozonizer System for Mangosteen Storage Container to Preserve the Quality of Mangosteen. Appl. Sci. 2023, 13, 4873. https://doi.org/10.3390/app13084873
Chankuson P, Chumsri P. The Plasma Ozonizer System for Mangosteen Storage Container to Preserve the Quality of Mangosteen. Applied Sciences. 2023; 13(8):4873. https://doi.org/10.3390/app13084873
Chicago/Turabian StyleChankuson, Pitchasak, and Paramee Chumsri. 2023. "The Plasma Ozonizer System for Mangosteen Storage Container to Preserve the Quality of Mangosteen" Applied Sciences 13, no. 8: 4873. https://doi.org/10.3390/app13084873
APA StyleChankuson, P., & Chumsri, P. (2023). The Plasma Ozonizer System for Mangosteen Storage Container to Preserve the Quality of Mangosteen. Applied Sciences, 13(8), 4873. https://doi.org/10.3390/app13084873