Metal Mesh-Based Infrared Transparent EMI Shielding Window with Balanced Shielding Properties over a Wide Frequency Spectrum
Abstract
:Featured Application
Abstract
1. Introduction
2. Design and Methods
2.1. Structure Design of Transparent EMI Shielding Window
2.2. Materials and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schroder, A.; Rasek, G.A.; Bruns, H.-D.; Reznicek, Z.; Kucera, J.; Loos, S.E.; Schuster, C. Analysis of High Intensity Radiated Field Coupling into Aircraft Using the Method of Moments. IEEE Trans. Electromagn. Compat. 2014, 56, 113–122. [Google Scholar] [CrossRef]
- Kim, S.; Oh, J.-S.; Kim, M.-G.; Jang, W.; Wang, M.; Kim, Y.; Seo, H.W.; Kim, Y.C.; Lee, J.-H.; Lee, Y.; et al. Electromagnetic Interference (EMI) Transparent Shielding of Reduced Graphene Oxide (RGO) Interleaved Structure Fabricated by Electrophoretic Deposition. ACS Appl. Mater. Interfaces 2014, 6, 17647–17653. [Google Scholar] [CrossRef] [PubMed]
- Geetha, S.; Kumar, K.K.S.; Rao, C.R.K.; Vijayan, M.; Trivedi, D.C. EMI Shielding: Methods and Materials-A Review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Qin, F.; Yan, Z.; Fan, J.; Cai, J.; Zhu, X.; Zhang, X. Highly Uniform and Stable Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire-PEDOT:PSS Composite for High Power Microwave Shielding. Macromol. Mater. Eng. 2021, 306, 2000607. [Google Scholar] [CrossRef]
- Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.-K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450. [Google Scholar] [CrossRef]
- Fortuna, L.; Buscarino, A. Smart Materials. Materials 2022, 15, 6307. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, Z.-Z. Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14, 16643–16653. [Google Scholar] [CrossRef]
- Van Viet, T.; Duc Dung, N.; Nguyen, A.T.; Hofmann, M.; Hsieh, Y.-P.; Kan, H.-C.; Hsu, C.-C. Electromagnetic Interference Shielding by Transparent Graphene/ Nickel Mesh Films. ACS Appl. Nano Mater. 2020, 3, 7474–7481. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, X.; Pan, J.; Liu, W.; Wen, K.; Zhai, D.; Shang, P.; Liu, P. Shorted Micro-Waveguide Array for High Optical Transparency and Superior Electromagnetic Shielding in Ultra-Wideband Frequency Spectrum. Adv. Mater. Technol. 2023, 2201532. [Google Scholar] [CrossRef]
- Han, J.; Wang, X.; Qiu, Y.; Zhu, J.; Hu, P. Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding. Carbon 2015, 87, 206–214. [Google Scholar] [CrossRef]
- Sun, C.; Meng, Y.; Liu, X.; Wang, X.; Liu, Y.; Tan, J. Ring and circular aperture hexagonal array resonance micromesh coating with infrared dual-bandpass extraordinary transmission and strong electromagnetic shielding. Mater. Chem. Phys. 2019, 234, 323–328. [Google Scholar] [CrossRef]
- Fernandes, G.E.; Lee, D.-J.; Kim, J.H.; Kim, K.-B.; Xu, J. Infrared and microwave shielding of transparent Al-doped ZnO superlattice grown via atomic layer deposition. J. Mater. Sci. 2013, 48, 2536–2542. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Han, L.; Lin, J.; Jin, P. High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 2017, 115, 34–42. [Google Scholar] [CrossRef]
- Ghosh, D.S.; Martinez, L.; Giurgola, S.; Vergani, P.; Pruneri, V. Widely transparent electrodes based on ultrathin metals. Opt. Lett. 2009, 34, 325–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys. 1967, 7, 37–55. [Google Scholar] [CrossRef]
- Menon, A.V.; Jagadeshvaran, P.L.; Bose, S. Geometry and mesh size control the EMI shielding in 3D printed conducting shape memory PU structures. J. Mater. Chem. C 2023, 11, 4474–4485. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Gruner, G. Infrared transparent carbon nanotube thin films. Appl. Phys. Lett. 2009, 94. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, C.; Park, Y.-B.; Guo, L.J. Thin-Metal-Film-Based Transparent Conductors: Material Preparation, Optical Design, and Device Applications. Adv. Opt. Mater. 2021, 9, 2001298. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Zhu, P.-L.; Yu, S.-H.; Sun, R.; Wong, C.-P.; Liao, W.-H. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding. Small 2018, 14, 1800534. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhou, Z.-H.; Zhou, C.-G.; Sun, W.-J.; Gao, J.-F.; Dai, K.; Yan, D.-X.; Li, Z.-M. Lightweight and Robust Carbon Nanotube/Polyimide Foam for Efficient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, J.; Qin, F.; Yan, Z.; Guo, A.; Kan, C. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 2020, 12, 14589–14597. [Google Scholar] [CrossRef]
- Yuan, C.; Huang, J.; Dong, Y.; Huang, X.; Lu, Y.; Li, J.; Tian, T.; Liu, W.; Song, W. Record-High Transparent Electromagnetic Interference Shielding Achieved by Simultaneous Microwave Fabry-Perot Interference and Optical Antireflection. ACS Appl. Mater. Interfaces 2020, 12, 26659–26669. [Google Scholar] [CrossRef]
- Han, Y.; Lin, J.; Liu, Y.; Fu, H.; Ma, Y.; Jin, P.; Tan, J. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci. Rep. 2016, 6, 25601. [Google Scholar] [CrossRef] [Green Version]
- Tung, P.D.; Jung, C.W. High Optical Visibility and Shielding Effectiveness Metal Mesh Film for Microwave Oven Application. IEEE Trans. Electromagn. Compat. 2020, 62, 1076–1081. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Govorun, I.V.; Podshivalov, I.V.; Simunin, M.M.; Tambasov, I.A.; Karpova, D.V.; Smolyarova, T.E.; Lukyanenko, A.V.; Karacharov, A.A.; et al. Cu-Ag and Ni-Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance. J. Mater. Sci. 2021, 56, 14741–14762. [Google Scholar] [CrossRef]
- Han, Y.; Zhong, H.; Liu, N.; Liu, Y.; Lin, J.; Jin, P. In Situ Surface Oxidized Copper Mesh Electrodes for High-Performance Transparent Electrical Heating and Electromagnetic Interference Shielding. Adv. Electron. Mater. 2018, 4, 1800156. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Mkhitaryan, V.K.; Chen, T.L.; Ghosh, D.S.; Pruneri, V. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1). Nat. Commun. 2016, 7, 13771. [Google Scholar] [CrossRef] [Green Version]
- Kuzhir, P.P.; Paddubskaya, A.G.; Maksimenko, S.A.; Kaplas, T.; Svirko, Y. Microwave absorption properties of pyrolytic carbon nanofilm. Nanoscale Res. Lett. 2013, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, H.; Li, Q.; Mou, N.; Chen, L.; Zhang, L. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window. RSC Adv. 2019, 9, 22282–22287. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tan, J. Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings. Prog. Electromagn. Res.-Pier 2013, 140, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Tropf, W.J.; Thomas, M.E.; Klocek, P. Infrared optical materials. Inorg. Opt. Mater. A Crit. Rev. 1996, 10286, 93–125. [Google Scholar] [CrossRef]
- Wang, W.; Bai, B.; Zhou, Q.; Ni, K.; Lin, H. Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction. Opt. Mater. Express 2018, 8, 3485–3493. [Google Scholar] [CrossRef]
- Qi, L.; Li, J.; Zhu, C.; Yang, Y.; Zhao, S.; Song, W. Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device. RSC Adv. 2016, 6, 13531–13536. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Tai, Y.; Zhu, X.; Qi, X.; Zhou, L.; Li, Z.; Lan, H. Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing. Opt. Laser Technol. 2022, 148, 107717. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Zhu, X.; Peng, Z.; Zhang, G.; Yang, J.; Wang, F.; Zhang, Y.F.; Sun, L.; Wang, R. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv. Sci. 2022, 9, 2105331. [Google Scholar] [CrossRef]
- Chen, X.; Nie, S.; Guo, W.; Fei, F.; Su, W.; Gu, W.; Cui, Z. Printable High-Aspect Ratio and High-Resolution Cu Grid Flexible Transparent Conductive Film with Figure of Merit over 80,000. Adv. Electron. Mater. 2019, 5, 1800991. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Jiao, H.; Schroeder, S.; Trost, M.; Wang, Z.; Cheng, X. Reducing light scattering in high-reflection coatings through destructive interference at fully correlated interfaces. Opt. Lett. 2017, 42, 5046–5049. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Li, W.; Li, P.; Ma, J.; Li, B.; Zhao, X.; Ju, Z.; Chang, H.; Xiao, L.; et al. Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS Nano 2020, 14, 8754–8765. [Google Scholar] [CrossRef]
- Jacoby, K.T.; Pieratt, M.W.; Halman, J.I.; Ramsey, K.A. Predicted and measured EMI shielding effectiveness of a metallic mesh coating on a sapphire window over a broad frequency range. In Proceedings of the Window and Dome Technologies and Materials XI, SPIE Defense, Security, and Sensing, Orlando, FL, USA, 13–17 April 2009; pp. 303–313. [Google Scholar]
- Shu, J.C.; Cao, W.Q.; Cao, M.S. Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Liu, Y.; Tan, J.; Ma, L.; Lin, S. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Opt. Lett. 2017, 42, 1620–1623. [Google Scholar] [CrossRef]
- Shi, K.; Su, J.; Hu, K.; Liang, H. High-performance copper mesh for optically transparent electromagnetic interference shielding. J. Mater. Sci.-Mater. Electron. 2020, 31, 11646–11653. [Google Scholar] [CrossRef]
- Yan-Jun, S.; Hao, C.; Song-hang, W.; Yan-Bing, L.; Li, W. Study on electromagnetic shielding of infrared/visible optical window. Mod. Appl. Sci. 2015, 9, 231. [Google Scholar] [CrossRef]
- Khodzitsky, M.K.; Bassarab, V.V.; Shakhmin, A.A.; Sokolov, V.S.; Kropotov, G.I. The Electromagnetic Shielding of Optoelectronic Devices by Mesh Structures. Appl. Sci. 2021, 11, 9841. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Y.; Zhao, Y.; Lin, L.; Li, L.; Su, T. Transparent and Broadband Diffusion Metasurface with High Transparency and High Shielding Effectiveness Using Metallic Mesh. IEEE Trans. Antennas Propag. 2022, 70, 5574–5583. [Google Scholar] [CrossRef]
- Chung, S.-i.; Kim, P.K.; Ha, T.-G. High-performance transparent electromagnetic interference shielding film based on metal meshes. J. Micromech. Microeng. 2023, 33, 035002. [Google Scholar] [CrossRef]
- Li, H.; Yin, Z.; Zhang, C.; Zhang, Y.; Deng, R.; Dong, H.; Wang, S.; Zhang, L. Fabry-Perot resonance-suppressed double-layer metal mesh window for electromagnetic interference shielding. Opt. Lett. 2022, 47, 5393–5396. [Google Scholar] [CrossRef]
- Pakdin, M.; Ghayekhloo, A.; Rezaei, P.; Afsahi, M. Transparent dual band Wi-Fi filter for double glazed energy saving window as a smart network. Microwave Opt. Technol. Lett. 2019, 61, 2545–2550. [Google Scholar] [CrossRef]
- Sharma, S.K.; Zhou, D.; Luttgen, A.; Sarris, C.D. A Micro Copper Mesh-Based Optically Transparent Triple-Band Frequency Selective Surface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 202–206. [Google Scholar] [CrossRef]
- King, D.J.J.; Hettak, K.; Chaharmir, M.R.; Gupta, S. Flexible Ink-Minimized Screen-Printed Frequency Selective Surfaces With Increased Optical Transparency for 5G Electromagnetic Interference Mitigation. IEEE Trans. Comp. Packag. Technol. 2023, 13, 110–119. [Google Scholar] [CrossRef]
Mesh Thickness of Cr/Au | Average SE (dB) | |||||
---|---|---|---|---|---|---|
1.7–2.6 (GHz) | 2.6–4 (GHz) | 4–6 (GHz) | 6–8 (GHz) | 8–12 (GHz) | 12–18 (GHz) | |
35 nm/285 nm | 26.1 | 23.7 | 21.9 | 24.7 | 25.2 | 20.9 |
30 nm/260 nm | 25.9 | 21.3 | 20.3 | 23.1 | 23.9 | 20.9 |
30 nm/230 nm | 25.7 | 20.6 | 19.2 | 22.2 | 23.5 | 20.4 |
25 nm/205 nm | 22.7 | 21.1 | 19.1 | 22.7 | 23.3 | 20.0 |
Mesh type | Mesh Thickness (μm) | Shielding Effectiveness (dB) | Ref | ||||
---|---|---|---|---|---|---|---|
4 GHz | 12 GHz | 18 GHz | Δ4–12 a | Δ12–18 b | |||
Square mesh | 2 | — | 30 | 19.5 | — | 10.5 | [26] |
Square Cu mesh | 2 | 30 | 20 | 16 | 10 | 4 | [24] |
Square Cu mesh | — | — | 13 | 5 | — | 8 | [42] |
Crackled mesh | 0.2 | — | 21 | 15 | — | 6 | [23] |
Hexagonal Cu mesh | 11 | 42.5 | 33.2 | 26.3 | 16.2 | 6.9 | [9] |
Multilayer SiO2/ZrO2 mesh structure | 0.397 | 34.2 | 25 | — | 8.8 | — | [47] |
Hexagonal ring mesh | — | 30.4 | 30.3 | 29.8 | 0.1 | 0.5 | [49] |
Square Ag mesh | 3 | 28 | 22 | 16 | 4 | 6 | [50] |
Square Ti/Au/Ag mesh | 0.14 | — | 23 | 17 | — | 6 | [48] |
Irregular Cr/Au mesh | 0.32 | 22 | 21.4 | 22.6 | 0.6 | 1.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Huang, X.; Wen, K.; Wu, Z.; Yao, L.; Pan, J.; Liu, W.; Liu, P. Metal Mesh-Based Infrared Transparent EMI Shielding Window with Balanced Shielding Properties over a Wide Frequency Spectrum. Appl. Sci. 2023, 13, 4846. https://doi.org/10.3390/app13084846
Liang Y, Huang X, Wen K, Wu Z, Yao L, Pan J, Liu W, Liu P. Metal Mesh-Based Infrared Transparent EMI Shielding Window with Balanced Shielding Properties over a Wide Frequency Spectrum. Applied Sciences. 2023; 13(8):4846. https://doi.org/10.3390/app13084846
Chicago/Turabian StyleLiang, Yuanlong, Xianjun Huang, Kui Wen, Zhaofeng Wu, Lixiang Yao, Jisheng Pan, Wencong Liu, and Peiguo Liu. 2023. "Metal Mesh-Based Infrared Transparent EMI Shielding Window with Balanced Shielding Properties over a Wide Frequency Spectrum" Applied Sciences 13, no. 8: 4846. https://doi.org/10.3390/app13084846
APA StyleLiang, Y., Huang, X., Wen, K., Wu, Z., Yao, L., Pan, J., Liu, W., & Liu, P. (2023). Metal Mesh-Based Infrared Transparent EMI Shielding Window with Balanced Shielding Properties over a Wide Frequency Spectrum. Applied Sciences, 13(8), 4846. https://doi.org/10.3390/app13084846