All-in-One Collimating Splitter Based on a Meta-Fiber Platform
Abstract
:Featured Application
Abstract
1. Introduction
2. Design of the All-in-One Collimating Splitter
2.1. Concept of the All-in-One Collimating Splitter
2.2. Design of the Phase Profile
2.3. Design of the Unit Cell
3. Results and Analysis on a Meta-Fiber Platform
3.1. Analysis Using Angular Spectrum Propagation Theory on a Single-Fiber Platform
3.2. Analysis Using FDTD on a Single-Fiber Platform
3.3. Analysis of the Influence of the Fabrication Errors Using FDTD
3.4. Large-Scale Spot Array Generation on a Fiber Array Platform
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dammann, H.; Görtler, K. High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 1971, 3, 312–315. [Google Scholar] [CrossRef]
- Kim, I.; Martins, R.J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H.-Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 2021, 16, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, H.; LaFosse, X.G.; Zhang, J.J.; Batoni, P.; Stack, J.D.; Gardner, J.J.O.E. Diffractive optical elements for calibration of LIDAR systems: Materials and fabrication. Opt. Eng. 2022, 62, 031206. [Google Scholar] [CrossRef]
- Chen, T.; Ghosh, C.; Watkins, L. Generation of Coded Structured Light Patterns Using VCSEL Arrays. U.S. Patent 10,353,215, 16 July 2019. [Google Scholar]
- Ekberg, M.; Larsson, M.; Hård, S.; Turunen, J.; Taghizadeh, M.R.; Westerholm, J.; Vasara, A.J.O.c. Multilevel grating array illuminators manufactured by electron-beam lithography. Opt. Commun. 1992, 88, 37–41. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z.J.s. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Lalanne, P.; Chavel, P.J.L.; Reviews, P. Metalenses at visible wavelengths: Past, present, perspectives. Laser Photonics Rev. 2017, 11, 1600295. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Capasso, F.J.S. Tunable structured light with flat optics. Science 2022, 376, 6860. [Google Scholar] [CrossRef]
- Lassalle, E.; Mass, T.W.; Eschimese, D.; Baranikov, A.V.; Khaidarov, E.; Li, S.; Paniagua-Dominguez, R.; Kuznetsov, A.I.J.A.P. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. ACS Photonics 2021, 8, 1457–1468. [Google Scholar] [CrossRef]
- Engelberg, J.; Zhou, C.; Mazurski, N.; Bar-David, J.; Kristensen, A.; Levy, U.J.N. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 2020, 9, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F.J.S. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F.J.N.n. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Rubin, N.A.; Zaidi, A.; Dorrah, A.H.; Shi, Z.; Capasso, F.J.S.A. Jones matrix holography with metasurfaces. Sci. Adv. 2021, 7, 7488. [Google Scholar] [CrossRef]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M.J.N.c. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S.J.N.n. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Yuan, J.; Hong, Y.; Liu, H.; Guo, J.; Dai, Q.; Wei, Z. Three-Channel Metasurfaces for Multi-Wavelength Holography and Nanoprinting. Nanomaterials 2023, 13, 183. [Google Scholar] [CrossRef]
- He, N.; Xu, X.; Guo, T.; Chen, R.; Xing, Y.; Jin, Y.; He, S.J.A.P. Highly Compact All-Solid-State Beam Steering Module Based on a Metafiber. ACS Photonics 2022, 9, 3094–3101. [Google Scholar] [CrossRef]
- Park, J.; Jeong, B.G.; Kim, S.I.; Lee, D.; Kim, J.; Shin, C.; Lee, C.B.; Otsuka, T.; Kyoung, J.; Kim, S.J.N.n. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 2021, 16, 69–76. [Google Scholar] [CrossRef]
- Chen, R.; Shao, Y.; Zhou, Y.; Dang, Y.; Dong, H.; Zhang, S.; Wang, Y.; Chen, J.; Ju, B.-F.; Ma, Y.J.N.L. A semisolid micromechanical beam steering system based on micrometa-lens arrays. Nano Lett. 2022, 22, 1595–1603. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, D.; Zhou, S.; Chen, G.; Su, J.; Sun, L.; Xiong, Y.; Li, X. Quasi-Freeform Metasurfaces for Wide-Angle Beam Deflecting and Splitting. Nanomaterials 2023, 13, 1156. [Google Scholar] [CrossRef]
- Yu, S.; Kim, Y.; Shin, E.; Kwon, S.-H. Dynamic Beam Steering and Focusing Graphene Metasurface Mirror Based on Fermi Energy Control. Micromachines 2023, 14, 715. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, R.; Wang, Y. Wide-Angle Scanning Graphene-Biased Terahertz Coding Meta-Surface. Micromachines 2023, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zeng, X.; Gu, M.; Zhang, Y.; Sun, R.; Zhang, Z.; Cui, G.; Zhou, Y.; Cheng, C.; Liu, C. Plasmonic Metasurfaces for Superposition of Profile-Tunable Tightly Focused Vector Beams and Generation of the Structured Light. Photonics 2023, 10, 317. [Google Scholar] [CrossRef]
- Guo, K.; Liu, Y.; Wei, Z.; Liu, H. Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface. Nanomaterials 2023, 13, 1094. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Song, X.; Reineke, B.; Li, T.; Li, X.; Liu, J.; Zhang, S.; Wang, Y.; Zentgref, T. Volumetric Generation of Optical Vortices with Metasurfaces. ACS Photonics 2017, 4, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Huang, L.; Tang, C.; Li, J.; Li, X.; Liu, J.; Wang, Y.; Zentgraf, T. Selective Diffraction with Complex Amplitude Modulation by Dielectric Metasurfaces. Adv. Opt. Mater. 2018, 6, 1701181. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Zhao, R.; Geng, G.; Li, J.; Huang, L.; Wang, Y. Independent Light Field Manipulation in Diffraction Orders of Metasurface Holography. Laser Photonics Rev. 2022, 16, 2100592. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Geng, G.; Li, X.; Li, J.; Wang, Y.; Huang, L. Encoding arbitrary phase profiles to 2D diffraction orders with controllable polarization states. Nanophotonics 2023, 12, 155–163. [Google Scholar] [CrossRef]
- Mamonova, A.V.; Simdyankin, I.V.; Kasyanova, I.V.; Artemov, V.V.; Geivandov, A.R.; Palto, S.P.; Ezhov, A.A.; Gorkunov, M.V. Liquid crystal metasurfaces for versatile electrically tunable diffraction. Liq. Cryst. 2022, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Z.; Jiang, H.; Deng, Y. Multi-Wavelength Spot-Array Beams Based on Tunable Dammann Grating Metasurface. Photonics 2023, 10, 141. [Google Scholar] [CrossRef]
- Wen, J.; Chen, L.; Yu, B.; Nieder, J.B.; Zhuang, S.; Zhang, D.; Lei, D. All-Dielectric Synthetic-Phase Metasurfaces Generating Practical Airy Beams. Acs Nano 2021, 15, 1030–1038. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, X.; Zhu, S.; Geng, G.; Li, X.; Li, J.; Wang, Y.; Li, X.; Huang, L. Generation of Airy beam arrays in real and K spaces based on a dielectric metasurface. Opt. Express 2021, 29, 18781–18790. [Google Scholar] [CrossRef]
- Lin, Z.; Li, X.; Zhao, R.; Song, X.; Wang, Y.; Huang, L. High-efficiency Bessel beam array generation by Huygens metasurfaces. Nanophotonics 2019, 8, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Kanwal, S.; Yu, B.; Feng, J.; Tao, C.; Wen, J.; Zhang, D. Generation of high-uniformity and high-resolution Bessel beam arrays through all-dielectric metasurfaces. Nanophotonics 2022, 11, 967–977. [Google Scholar] [CrossRef]
- Ni, Y.; Chen, S.; Wang, Y.; Tan, Q.; Xiao, S.; Yang, Y.J.N.L. Metasurface for structured light projection over 120 field of view. Nano Lett. 2020, 20, 6719–6724. [Google Scholar] [CrossRef]
- Zhou, C.H.; Liu, L.R. Numerical study of dammann array illuminators. Appl. Opt. 1995, 34, 5961–5969. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, C.; Wei, S.; Liu, K.; Fan, X. Numerical study of coupled Dammann grating. In Proceedings of the Holography, Diffractive Optics, and Applications VI, Beijing, China, 4 December 2014; pp. 412–419. [Google Scholar]
- Zhou, C.; Lee, W.-B.; Gao, S.; Li, H.; Park, C.-S.; Choi, D.-Y.; Lee, S.-S. All-Dielectric Fiber Meta-Tip Enabling Vortex Generation and Beam Collimation for Optical Interconnect. Laser Photonics Rev. 2021, 15, 2000581. [Google Scholar] [CrossRef]
- Jorge, N.; Stephen, J.W. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hugonin, J.P.; Lalanne, P. Reticolo software for grating analysis. arXiv 2021, arXiv:2101.00901. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, N.; Guo, T.; Jin, Y.; He, S. All-in-One Collimating Splitter Based on a Meta-Fiber Platform. Appl. Sci. 2023, 13, 4603. https://doi.org/10.3390/app13074603
He N, Guo T, Jin Y, He S. All-in-One Collimating Splitter Based on a Meta-Fiber Platform. Applied Sciences. 2023; 13(7):4603. https://doi.org/10.3390/app13074603
Chicago/Turabian StyleHe, Nan, Tingbiao Guo, Yi Jin, and Sailing He. 2023. "All-in-One Collimating Splitter Based on a Meta-Fiber Platform" Applied Sciences 13, no. 7: 4603. https://doi.org/10.3390/app13074603
APA StyleHe, N., Guo, T., Jin, Y., & He, S. (2023). All-in-One Collimating Splitter Based on a Meta-Fiber Platform. Applied Sciences, 13(7), 4603. https://doi.org/10.3390/app13074603