Polymer-Metal Adhesion of Single-Lap Joints Using Fused Filament Fabrication Process: Aluminium with Carbon Fiber Reinforced Polyamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Specimens
2.3. Surface Preparation of the Joints
2.4. Optical Profilometry
2.5. Scanning Electron Microscopy
2.6. Single-Lap Joints—Mechanical Tests
3. Results and Discussion
3.1. Surface Roughness of the Substrate
3.2. Interfaces and Morphology
3.3. Mechanical Properties
3.4. Fracture and Failure Modes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Commission. The European Green Deal; European Comission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. A New Industrial Strategy for Europe; European Comission: Brussels, Belgium, 2020. [Google Scholar]
- Sankaranarayanan, R.; Hynes, N.R.J. Prospects of Joining Multi-Material Structures. AIP Conf. Proc. 2018, 1953, 130021. [Google Scholar] [CrossRef]
- Martinsen, K.; Hu, S.J.; Carlson, B.E. Joining of Dissimilar Materials. CIRP Ann. 2015, 64, 679–699. [Google Scholar] [CrossRef]
- Haghshenas, M.; Gerlich, A.P. Joining of Automotive Sheet Materials by Friction-Based Welding Methods: A Review. Eng. Sci. Technol. Int. J. 2018, 21, 130–148. [Google Scholar] [CrossRef]
- Taghipoor, H.; Eyvazian, A. Quasi-Static Axial Crush Response and Energy Absorption of Composite Wrapped Metallic Thin-Walled Tube. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 158. [Google Scholar] [CrossRef]
- Elmi Hosseini, S.R.; Fernandes, F.A.O.; Pereira, A.B.; Li, Z. Welding of Dissimilar Materials in Aerospace Systems; Springer Nature: Cham, Switzerland, 2022; pp. 317–344. [Google Scholar] [CrossRef]
- Chen, H.-C.; Pinkerton, A.J.; Li, L. Fibre Laser Welding of Dissimilar Alloys of Ti-6Al-4V and Inconel 718 for Aerospace Applications. Int. J. Adv. Manuf. Technol. 2011, 52, 977–987. [Google Scholar] [CrossRef]
- Taghipoor, H.; Sefidi, M. Energy Absorption of Foam-Filled Corrugated Core Sandwich Panels under Quasi-Static Loading. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 234–246. [Google Scholar] [CrossRef]
- Shim, H.; McCullough, E.A.; Jones, B.W. Using Phase Change Materials in Clothing. Text. Res. J. 2001, 71, 495–502. [Google Scholar] [CrossRef]
- Levy, G.N.; Schindel, R.; Kruth, J.P. Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives. CIRP Ann. 2003, 52, 589–609. [Google Scholar] [CrossRef]
- Bahraminasab, M.; Sahari, B.B.; Edwards, K.L.; Farahmand, F.; Hong, T.S.; Arumugam, M.; Jahan, A. Multi-Objective Design Optimization of Functionally Graded Material for the Femoral Component of a Total Knee Replacement. Mater. Des. 2014, 53, 159–173. [Google Scholar] [CrossRef]
- MacDonald, E.; Wicker, R. Multiprocess 3D Printing for Increasing Component Functionality. Science 2016, 353, aaf2093. [Google Scholar] [CrossRef]
- Berman, B. 3-D Printing: The New Industrial Revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Dumitrescu, G.C.; Tanase, I.A. 3D Printing—A New Industrial Revolution. Knowl. Horizons Econ. 2016, 8, 32–39. [Google Scholar]
- Kah, P.; Suoranta, R. Techniques for Joining Dissimilar Materials: Metals and Polymers. Rev. Adv. Mater. Sci. 2014, 36, 152–164. [Google Scholar]
- Gonzales, D.S.; Alvarez, A.G. Additive Manufacturing Feasibility Study and Technology Demonstration EDA AM—State of the Art and Strategic Report; European Defence Agency: Ixelles, Belgium, 2018; pp. 1–187. [Google Scholar]
- Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S. Multiple Material Additive Manufacturing—Part 1: A Review. Virtual Phys. Prototyp. 2013, 8, 19–50. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ISO: Geneva, Switzerland, 2021. [CrossRef]
- Fafenrot, S.; Grimmelsmann, N.; Wortmann, M.; Ehrmann, A. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling. Materials 2017, 10, 1199. [Google Scholar] [CrossRef]
- Falck, R.; Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. AddJoining: A Novel Additive Manufacturing Approach for Layered Metal-Polymer Hybrid Structures. Mater. Lett. 2018, 217, 211–214. [Google Scholar] [CrossRef]
- Falck, R.; dos Santos, J.F.; Amancio-Filho, S.T. Microstructure and Mechanical Performance of Additively Manufactured Aluminum 2024-T3/Acrylonitrile Butadiene Styrene Hybrid Joints Using an AddJoining Technique. Materials 2019, 12, 864. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Shrivastava, A. Introduction to Plastics Engineering. In Introduction to Plastics Engineering; Elsevier: Cambridge, MA, USA, 2018; pp. 1–16. [Google Scholar] [CrossRef]
- Langford, W. Achieving Precise Flow in Fused Deposition Modeling Extruders; Term Paper—Engineering Management; Tufts University: Medford, MA, USA, 2012. [Google Scholar]
- Turner, B.N.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Mohd Ariffin, M.K.A.; Hatami, S. An Overview of Fused Deposition Modelling (FDM): Research, Development and Process Optimisation. Rapid Prototyp. J. 2021, 27, 562–582. [Google Scholar] [CrossRef]
- Anitha, R.; Arunachalam, S.; Radhakrishnan, P. Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling. J. Mater. Process. Technol. 2001, 118, 385–388. [Google Scholar] [CrossRef]
- Van Weeren, R.; Agarwala, M.; Jamalabad, V.R.; Bandyopadhyay, A.; Vaidyanathan, R.; Langrana, N.; Safari, A.; Whalen, P.; Danforth, S.C.; Ballard, C. Quality of Parts Processed by Fused Deposition. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 7–9 August 1995. [Google Scholar] [CrossRef]
- Agarwala, M.K.; Jamalabad, V.R.; Langrana, N.A.; Safari, A.; Whalen, P.J.; Danforth, S.C. Structural Quality of Parts Processed by Fused Deposition. Rapid Prototyp. J. 1996, 2, 4–19. [Google Scholar] [CrossRef]
- Dey, A.; Yodo, N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. J. Manuf. Mater. Process. 2019, 3, 64. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Mater. Des. 2009, 30, 4243–4252. [Google Scholar] [CrossRef]
- Kuznetsov, V.E.; Solonin, A.N.; Urzhumtsev, O.D.; Schilling, R.; Tavitov, A.G. Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process. Polymer 2018, 10, 313. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Vicente, C.M.S.; Martins, T.S.; Leite, M.; Ribeiro, A.; Reis, L. Influence of Fused Deposition Modeling Parameters on the Mechanical Properties of ABS Parts. Polym. Adv. Technol. 2020, 31, 501–507. [Google Scholar] [CrossRef]
- Bagsik, A.; Schöppner, V. Mechanical Properties of Fused Deposition Modeling Parts Manufactured with ULTEM 9085. In Proceedings of the 69th Annual Technical Conference of the Society of Plastics Engineers (ANTEC’11), Boston, MA, USA, 1–5 May 2011. [Google Scholar]
- Magnus, C. Feasibility Study of Metal to Polymer Hybrid Joinin. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2012. [Google Scholar]
- Troschitz, J.; Vorderbrüggen, J.; Kupfer, R.; Gude, M.; Meschut, G. Joining of Thermoplastic Composites with Metals Using Resistance Element Welding. Appl. Sci. 2020, 10, 7251. [Google Scholar] [CrossRef]
- Popp, J.; Römisch, D.; Merklein, M.; Drummer, D. Joining of CFRT/Steel Hybrid Parts via Direct Pressing of Cold Formed Non-Rotational Symmetric Pin Structures. Appl. Sci. 2022, 12, 4962. [Google Scholar] [CrossRef]
- Petrie, E.M. Adhesive Bonding of Textiles: Principles, Types of Adhesive and Methods of Use. In Joining Textiles Principles and Applications; Elsevier: Cambridge, MA, USA, 2013; pp. 225–274. [Google Scholar] [CrossRef]
- Chawla, K.K. Composite Materials; Springer: New York, NY, USA, 2012; ISBN 978-0-387-74364-6. [Google Scholar]
- Ebnesajjad, S. Material Surface Preparation Techniques. In Handbook of Adhesives and Surface Preparation Technology, Applications and Manufacturing; Elsevier: Cambridge, MA, USA, 2011; pp. 49–81. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Smilga, V.P. Electronic Theory of Adhesion. J. Appl. Phys. 2004, 38, 4609. [Google Scholar] [CrossRef]
- Possart, W. Experimental and Theoretical Description of the Electrostatic Component of Adhesion at Polymer/Metal Contacts. Int. J. Adhes. Adhes. 1988, 8, 77–83. [Google Scholar] [CrossRef]
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P.J. Adhesion of Polymers. Prog. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
- Baldan, A. Adhesion Phenomena in Bonded Joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Wang, H. Improving the Adhesion of Polyethylene by UV Grafting. J. Adhes. 2006, 82, 731–745. [Google Scholar] [CrossRef]
- Tang, H.; Martin, D.C. Microstructural Studies of Interfacial Deformation in Painted Thermoplastic Polyolefins (TPOs). J. Mater. Sci. 2002, 37, 4783–4791. [Google Scholar] [CrossRef]
- Voyutskii, S.S.; Vakula, V.L. The Role of Diffusion Phenomena in Polymer-to-Polymer Adhesion. J. Appl. Polym. Sci. 1963, 7, 475–491. [Google Scholar] [CrossRef]
- Bikerman, J.J. Causes of Poor Adhesion: Weak Boundary Layers. Ind. Eng. Chem. 2002, 59, 40–44. [Google Scholar] [CrossRef]
- Nenakhov, S.A. Basic Terms and Definitions in Adhesion. Polym. Sci. Ser. D 2008, 1, 19–22. [Google Scholar] [CrossRef]
- Li, J.; Xia, L.; Li, P.; Zhu, Y.; Sun, Y.; Zuo, D. Relationship between Coefficient of Friction and Surface Roughness of Wafer in Nanomachining Process. SPIE 2013, 8793, 87931Y. [Google Scholar] [CrossRef]
- Ochoa-Putman, C.; Vaidya, U.K. Mechanisms of Interfacial Adhesion in Metal–Polymer Composites—Effect of Chemical Treatment. Compos. A Appl. Sci. Manuf. 2011, 42, 906–915. [Google Scholar] [CrossRef]
- Chueh, Y.H.; Wei, C.; Zhang, X.; Li, L. Integrated Laser-Based Powder Bed Fusion and Fused Filament Fabrication for Three-Dimensional Printing of Hybrid Metal/Polymer Objects. Addit. Manuf. 2020, 31, 100928. [Google Scholar] [CrossRef]
- Islam, M.S.; Tong, L.; Falzon, P.J. Influence of Metal Surface Preparation on Its Surface Profile, Contact Angle, Surface Energy and Adhesion with Glass Fibre Prepreg. Int. J. Adhes. Adhes. 2014, 51, 32–41. [Google Scholar] [CrossRef]
- Harris, A.F.; Beevers, A. The Effects of Grit-Blasting on Surface Properties for Adhesion. Int. J. Adhes. Adhes. 1999, 19, 445–452. [Google Scholar] [CrossRef]
- Petrie, E.M. Handbook of Adhesives and Sealants; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Objois, A.; Gilibert, Y.; Fargette, B. Theoretical and Experimental Analysis of the Scarf Joint Bonded Structure: Influence of the Adhesive Thickness on the Micro-Mechanical Behavior. J. Adhes. 1999, 70, 13–32. [Google Scholar] [CrossRef]
- Duncan, B.C.; Crocker, L.E. Review of Tests for Adhesion Strength; National Physical Laboratory: Middlesex, UK, 2001. [Google Scholar]
- Yilmaz, B.; Asokkumar, A.; Jasiūnienė, E.; Kažys, R.J. Air-Coupled, Contact, and Immersion Ultrasonic Non-Destructive Testing: Comparison for Bonding Quality Evaluation. Appl. Sci. 2020, 10, 6757. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Pappalettera, G.; Vimalathithan, P.K. Multiparameter Approach for Damage Propagation Analysis in Fiber-Reinforced Polymer Composites. Appl. Sci. 2021, 11, 393. [Google Scholar] [CrossRef]
- Olivera, S.; Muralidhara, H.B.; Venkatesh, K.; Gopalakrishna, K.; Vivek, C.S. Plating on Acrylonitrile–Butadiene–Styrene (ABS) Plastic: A Review. J. Mater. Sci. 2016, 51, 3657–3674. [Google Scholar] [CrossRef]
- Arnold, J. High Quality Copper-Nickel-Chromium Plating on Plastics: A Continuous Process and Its Challenges. Plat. Surf. Finish. 2004, 91, 38–47. [Google Scholar]
- Zhang, H.; Shen, L.; Chang, J. Comparative Study of Electroless Ni-p, Cu, Ag, and Cu-Ag Plating on Polyamide Fabrics. J. Ind. Text. 2011, 41, 25–40. [Google Scholar] [CrossRef]
- Giraud, D.; Borit, F.; Guipont, V.; Jeandin, M.; Malhaire, J.M. Metallization of a Polymer Using Cold Spray: Application to Aluminum Coating of Polyamide 66. In Proceedings of the International Thermal Spray Conference, Houston, TX, USA, 21–24 May 2012; pp. 265–270. [Google Scholar] [CrossRef]
- Dielectric Manufacturing ABS Material Properties. Available online: https://dielectricmfg.com/knowledge-base/abs/ (accessed on 15 December 2022).
- Cantrell, J.; Rohde, S.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Jerez, A.; Steinbach, D.; Kroese, C.; et al. Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts. In Conference Proceedings of the Society for Experimental Mechanics Series; Springer: New York, NY, USA, 2017; Volume 3, pp. 89–105. ISBN 9783319415994. [Google Scholar]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques. J. Manuf. Process. 2016, 21, 39–45. [Google Scholar] [CrossRef]
- Novakova-Marcincinova, L.; Novak-Marcincin, J. Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology. Int. J. Ind. Manuf. Eng. 2012, 6, 2082–2085. [Google Scholar] [CrossRef]
- Gilbert, M. Aliphatic Polyamides. Brydson’s Plastics Materials, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 487–511. [Google Scholar] [CrossRef]
- Sardinha, M.; Vicente, C.M.S.; Frutuoso, N.; Leite, M.; Ribeiro, R.; Reis, L. Effect of the Ironing Process on ABS Parts Produced by FDM. Mater. Des. Process. Commun. 2021, 3, e151. [Google Scholar] [CrossRef]
- Wang, T.M.; Xi, J.T.; Jin, Y. A Model Research for Prototype Warp Deformation in the FDM Process. Int. J. Adv. Manuf. Technol. 2006, 33, 1087–1096. [Google Scholar] [CrossRef]
- Cham, J.G.; Pruitt, B.L.; Cutkosky, M.R.; Binnard, M.; Weiss, L.E.; Neplotnik, G. Layered Manufacturing with Embedded Components: Process Planning Considerations. Proc. ASME Des. Eng. Tech. Conf. 1999, 4, 93–101. [Google Scholar] [CrossRef]
- Mieszala, M.; Hasegawa, M.; Guillonneau, G.; Bauer, J.; Raghavan, R.; Frantz, C.; Kraft, O.; Mischler, S.; Michler, J.; Philippe, L. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small 2017, 13, 1602514. [Google Scholar] [CrossRef]
- ASTM Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension Loading. Available online: https://www.astm.org/d3163-01r14.html (accessed on 14 December 2022).
- ASTM Standard E8/E8M-13a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013; pp. 1–27.
- Markforged Material Datasheet Composites. Available online: https://static.markforged.com/downloads/composites-data-sheet.pdf (accessed on 15 December 2022).
- Fillamentum 3D Printing Guide—Fillamentum Nylon CF15 Carbon. Available online: http://www.fillamentumautomotive.com/wp-content/uploads/2020/10/FI_Printing_Guide_Nylon_CF15_Carbon.pdf (accessed on 15 December 2022).
- Spoerk, M.; Gonzalez-Gutierrez, J.; Sapkota, J.; Schuschnigg, S.; Holzer, C. Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication. Plast. Rubber Compos. 2018, 47, 17–24. [Google Scholar] [CrossRef]
- Ghumatkar, A.; Budhe, S.; Sekhar, R.; Banea, M.D.; De Barros, S. Influence of Adherend Surface Roughness on the Adhesive Bond Strength. Lat. Am. J. Solids Struct. 2016, 13, 2356–2370. [Google Scholar] [CrossRef]
- Filmetrics ProfilmOnline—Surface Imaging, Analysis, and Measurement Software for 3D Profilometers and AFMs. Available online: https://www.profilmonline.com/ (accessed on 27 December 2022).
- Bechtel, S.; Schweitzer, R.; Frey, M.; Busch, R.; Herrmann, H.-G. Material Extrusion of Structural Polymer–Aluminum Joints—Examining Shear Strength, Wetting, Polymer Melt Rheology and Aging. Materials 2022, 15, 3120. [Google Scholar] [CrossRef]
- Boutar, Y.; Naïmi, S.; Mezlini, S.; Ali, M.B.S. Effect of Surface Treatment on the Shear Strength of Aluminium Adhesive Single-Lap Joints for Automotive Applications. Int. J. Adhes. Adhes. 2016, 67, 38–43. [Google Scholar] [CrossRef]
- Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. Influence of Aluminum Surface Pre-Treatments on the Bonding Mechanisms and Mechanical Performance of Metal-Composite Single-Lap Joints. Weld. World 2017, 61, 1099–1115. [Google Scholar] [CrossRef]
- Darla, V.; Satish Ben, B.; Sai Srinadh, K.; Venkata Rao, K. Evaluation of Aluminum to Composite Bonded Lap Joints. High Perform. Polym. 2022, 34, 1152–1163. [Google Scholar] [CrossRef]
- Musiari, F.; Moroni, F. Experimental Study of the Influence of the Surface Preparation on the Fatigue Behavior of Polyamide Single Lap Joints. Materials 2021, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, G.; Marinello, F.; Bariani, P.F. Aluminum Sheet Surface Roughness Correlation with Adhesion in Polymer Metal Hybrid Overmolding. CIRP Ann. 2011, 60, 559–562. [Google Scholar] [CrossRef]
- Cheng, F.; Hu, Y.; Zhang, X.; Hu, X.; Huang, Z. Adhesive Bond Strength Enhancing between Carbon Fiber Reinforced Polymer and Aluminum Substrates with Different Surface Morphologies Created by Three Sulfuric Acid Solutions. Compos. A Appl. Sci. Manuf. 2021, 146, 106427. [Google Scholar] [CrossRef]
Filament | Printing Temperature (°C) | Infill Percentage | Deposition Speed (mm/s) | Layer Thickness (mm) | Raster Angle (°) | Number of Contours |
---|---|---|---|---|---|---|
ABS | 280 | 100 | 50 | 0.1 | ±45 | 12 |
PA | 270 | 100 | 45 | 0.1 | ±45 | 12 |
PA + CF | 260 | 100 | 30 | 0.1 | ±45 | 12 |
Filament | Surface Treatment | Primer | Single-Lap Joint |
---|---|---|---|
ABS | SP | No | Fail |
Yes | Fail | ||
GB | No | Fail | |
Yes | Success | ||
PA | SP | No | Fail |
Yes | Success | ||
GB | No | Fail | |
Yes | Success | ||
PA + CF | SP | No | Fail |
Yes | Success | ||
GB | No | Fail | |
Yes | Success |
Surface Treatment | |||
---|---|---|---|
None | SP | GB | |
Ra [µm] | 0.16 ± 0.04 | 0.32 ± 0.05 | 1.65 ± 0.46 |
Rz [µm] | 0.58 ± 0.12 | 1.12 ± 0.22 | 6.20 ± 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, G.; Vicente, C.M.S.; Leite, M. Polymer-Metal Adhesion of Single-Lap Joints Using Fused Filament Fabrication Process: Aluminium with Carbon Fiber Reinforced Polyamide. Appl. Sci. 2023, 13, 4429. https://doi.org/10.3390/app13074429
Martins G, Vicente CMS, Leite M. Polymer-Metal Adhesion of Single-Lap Joints Using Fused Filament Fabrication Process: Aluminium with Carbon Fiber Reinforced Polyamide. Applied Sciences. 2023; 13(7):4429. https://doi.org/10.3390/app13074429
Chicago/Turabian StyleMartins, Guilherme, Carlos M. S. Vicente, and Marco Leite. 2023. "Polymer-Metal Adhesion of Single-Lap Joints Using Fused Filament Fabrication Process: Aluminium with Carbon Fiber Reinforced Polyamide" Applied Sciences 13, no. 7: 4429. https://doi.org/10.3390/app13074429
APA StyleMartins, G., Vicente, C. M. S., & Leite, M. (2023). Polymer-Metal Adhesion of Single-Lap Joints Using Fused Filament Fabrication Process: Aluminium with Carbon Fiber Reinforced Polyamide. Applied Sciences, 13(7), 4429. https://doi.org/10.3390/app13074429