A Review of Knowledge Graph-Based Reasoning Technology in the Operation of Power Systems
Abstract
:1. Introduction
- ①
- What are the key technologies and necessary processes to build a KG? How to construct a KG in the power domain?
- ②
- Compared with other fields, what are the technical difficulties of KG in power systems? How are they solved?
- ③
- What is the progress of current research on KG, and in which areas are KGs more used in power systems? Which areas are less used?
- ④
- What is the future direction of research on KG in the field of electric power?
2. Knowledge Graph Key Technologies
2.1. Knowledge Extraction
2.1.1. Entity Extraction
2.1.2. Relationship Extraction
2.1.3. Entity Event Extraction
2.2. Knowledge Representation
2.3. Knowledge Mining
2.3.1. Entity Linking
2.3.2. Rule Mining
2.4. Knowledge Fusion
2.5. Knowledge Reasoning
2.5.1. Deductive-Based Knowledge Reasoning
2.5.2. Inductive-Based Knowledge Reasoning
2.5.3. Automatic Updates for Reasoning
3. Applications of Knowledge Graphs in the Power System Operation
3.1. The Overall Construction Process of KG in the Power System Field
3.1.1. Data Acquisition
3.1.2. Graph Construction
3.1.3. Knowledge Reasoning
3.1.4. Storage Options
3.2. Power System Operation Application Scenarios for the KG
3.2.1. Power Equipment Operation and Maintenance (O&M)
3.2.2. Power Customer Service
3.2.3. Scheduling Fault Decisions
3.3. Other Applications of KG in Power Operation
4. Further Improvements for KG Technologies in the Power Field
4.1. Data-Driven, Knowledge-Driven Integration
4.2. Multi-Source Data Fusion and Dynamic Updates
4.3. Power System Big KG Unification
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marot, A.; Kelly, A.; Naglic, M.; Barbesant, V.; Cremer, J.; Stefanov, A.; Viebahn, J. Perspectives on future power system control centers for energy transition. J. Mod. Power Syst. Clean Energy 2022, 10, 328–344. [Google Scholar] [CrossRef]
- Xie, C.; Yu, B.; Zeng, Z.; Yang, Y.; Liu, Q. Multilayer internet-of-things middleware based on knowledge graph. IEEE Internet Things J. 2020, 8, 2635–2648. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, W.; Li, Z.; Wipf, D.P.; Yan, J. Nodeformer: A scalable graph structure learning transformer for node classification. Adv. Neural Inf. Process. Syst. 2022, 35, 27387–27401. [Google Scholar]
- Zhou, Y.; Lin, Z.; Tu, L.; Song, Y.; Wu, Z. Big Data and Knowledge Graph Based Fault Diagnosis for Electric Power Systems. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2022, 9, e1. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, L.; Yu, X.; Wu, F. Fault section identification method of intelligent distribution network based on Fuzzy Petri net and multi-source data. In Proceedings of the 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 15–16 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 356–360. [Google Scholar]
- Kundacina, O.; Cosovic, M.; Vukobratovic, D. State estimation in electric power systems leveraging graph neural networks. arXiv 2022, arXiv:2201.04056. [Google Scholar]
- Muennighoff, N. Sgpt: Gpt sentence embeddings for semantic search. arXiv 2022, arXiv:2202.08904. [Google Scholar]
- Liu, M.; Li, X.; Li, J.; Liu, Y.; Zhou, B.; Bao, J. A knowledge graph-based data representation approach for IIoT-enabled cognitive manufacturing. Adv. Eng. Inform. 2022, 51, 101515. [Google Scholar] [CrossRef]
- Gong, F.; Wang, M.; Wang, H.; Wang, S.; Liu, M. SMR: Medical knowledge graph embedding for safe medicine recommendation. Big Data Res. 2021, 23, 100174. [Google Scholar] [CrossRef]
- Zhang, D.; Jia, Q.; Yang, S.; Han, X.; Xu, C.; Liu, X.; Xie, Y. Traditional Chinese medicine automated diagnosis based on knowledge graph reasoning. Comput. Mater. Contin. 2022, 71, 159–170. [Google Scholar]
- Zhao, Y.; Du, H.; Liu, Y.; Wei, S.; Chen, X.; Zhuang, F.; Li, Q.; Kou, G. Stock Movement Prediction Based on Bi-Typed Hybrid-Relational Market Knowledge Graph Via Dual Attention Networks. IEEE Trans. Knowl. Data Eng. 2022. [Google Scholar] [CrossRef]
- Mao, X.; Sun, H.; Zhu, X.; Li, J. Financial fraud detection using the related-party transaction knowledge graph. Procedia Comput. Sci. 2022, 199, 733–740. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Du, J.; Ning, B.; Chen, H. A subgraph matching algorithm based on subgraph index for knowledge graph. Front. Comput. Sci. 2022, 16, 163606. [Google Scholar] [CrossRef]
- Lyu, M.; Li, X.; Chen, C.H. Achieving Knowledge-as-a-Service in IIoT-driven smart manufacturing: A crowdsourcing-based continuous enrichment method for Industrial Knowledge Graph. Adv. Eng. Inform. 2022, 51, 101494. [Google Scholar] [CrossRef]
- Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H.S.; Lehmann, J. Temporal knowledge graph embedding model based on additive time series decomposition. arXiv 2019, arXiv:1911.07893. [Google Scholar]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [Google Scholar] [CrossRef] [PubMed]
- Kor, Y.; Tan, L.; Reformat, M.Z.; Musilek, P. Gridkg: Knowledge graph representation of distribution grid data. In Proceedings of the 2020 IEEE Electric Power and Energy Conference (EPEC), Virtual, 7–8 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Ou, Q.; Zheng, W.; Qi, W.; Fang, J.; Liu, Z.; Zhu, Y. Research on the Construction Method of Knowledge Graph for Electric Power Wireless Private Network. In Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 10–13. [Google Scholar]
- Hitzler, P. A review of the semantic web field. Commun. ACM 2021, 64, 76–83. [Google Scholar] [CrossRef]
- Zhu, G.; Iglesias, C.A. Computing semantic similarity of concepts in knowledge graphs. IEEE Trans. Knowl. Data Eng. 2016, 29, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Chen, L. The analysis of research frontier and hot topics about knowledge discovery (KD) based on mapping knowledge domain. In Proceedings of the 2010 WASE International Conference on Information Engineering, Qinhuangdao, China, 14–15 August 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 2, pp. 28–32. [Google Scholar]
- Chen, W.; Yin, S.; Qiu, Y. Schema reasoning and semantic representation for citation semantic link network. In Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 3, pp. 366–369. [Google Scholar]
- Kyzirakos, K.; Savva, D.; Vlachopoulos, I.; Vasileiou, A.; Karalis, N.; Koubarakis, M.; Manegold, S. GeoTriples: Transforming geospatial data into RDF graphs using R2RML and RML mappings. J. Web Semant. 2018, 52, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Kasongo, S.M.; Sun, Y. A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Comput. Secur. 2020, 92, 101752. [Google Scholar] [CrossRef]
- Su, Z.; Hao, M.; Zhang, Q.; Chai, B.; Zhao, T. Automatic knowledge graph construction based on relational data of power terminal equipment. In Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 15–18 May 2020; pp. 761–765. [Google Scholar]
- Wang, J.; Xu, W.; Fu, X.; Xu, G.; Wu, Y. ASTRAL: Adversarial trained LSTM-CNN for named entity recognition. Knowl. Based Syst. 2020, 197, 105842. [Google Scholar] [CrossRef]
- Liu, C.; Fan, C.; Wang, Z.; Sun, Y. An instance transfer-based approach using enhanced recurrent neural network for domain named entity recognition. IEEE Access 2020, 8, 45263–45270. [Google Scholar] [CrossRef]
- Li, D.; Tu, Y.; Zhou, X.; Zhang, Y.; Ma, Z. End-to-End Chinese Entity Recognition Based on BERT-BiLSTM-ATT-CRF. ZTE Commun. 2022, 20 (Suppl. S1), 27–35. [Google Scholar]
- Misawa, S.; Taniguchi, M.; Miura, Y.; Ohkuma, T. Character-based Bidirectional LSTM-CRF with words and characters for Japanese Named Entity Recognition. In Proceedings of the First Workshop on Subword and Character Level Models in NLP, Copenhagen, Denmark, 7 September 2017; pp. 97–102. [Google Scholar]
- Ma, X.; Hovy, E. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv 2016, arXiv:1603.01354. [Google Scholar]
- Kane, B.; Rossi, F.; Guinaudeau, O.; Chiesa, V.; Quénel, I.; Chau, S. Joint Intent Detection and Slot Filling via CNN-LSTM-CRF. In Proceedings of the 2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir, Morocco, 12–18 December 2020; pp. 342–347. [Google Scholar]
- Santos, C.N.; Xiang, B.; Zhou, B. Classifying relations by ranking with convolutional neural networks. arXiv 2015, arXiv:1504.06580. [Google Scholar]
- Wang, L.; Cao, Z.; De Melo, G.; Liu, Z. Relation classification via multi-level attention cnns. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; Volume 1: Long Papers, pp. 1298–1307. [Google Scholar]
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term memory networks for relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; Volume 2: Short Papers, pp. 207–212. [Google Scholar]
- Xu, K.; Feng, Y.; Huang, S.; Zhao, D. Semantic relation classification via convolutional neural networks with simple negative sampling. arXiv 2015, arXiv:1506.07650. [Google Scholar]
- Liu, Y.; Wei, F.; Li, S.; Ji, H.; Zhou, M.; Wang, H. A dependency-based neural network for relation classification. arXiv 2015, arXiv:1507.04646. [Google Scholar]
- Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation classification via convolutional deep neural network. In Proceedings of the COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, 23–29 August 2014; pp. 2335–2344. [Google Scholar]
- Miwa, M.; Bansal, M. End-to-end relation extraction using lstms on sequences and tree structures. arXiv 2016, arXiv:1601.00770. [Google Scholar]
- Qu, J.; Ouyang, D.; Hua, W.; Ye, Y.; Li, X. Distant supervision for neural relation extraction integrated with word attention and property features. Neural Netw. 2018, 100, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, T.; Han, R.; Cui, H.; Yue, L.; Han, J.; Liu, L. Distantly supervised relation extraction using global hierarchy embeddings and local probability constraints. Knowl. Based Syst. 2022, 235, 107637. [Google Scholar] [CrossRef]
- Feng, J.; Huang, M.; Zhao, L.; Yang, Y.; Zhu, X. Reinforcement learning for relation classification from noisy data. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Qiao, B.; Zou, Z.; Huang, Y.; Fang, K.; Zhu, X.; Chen, Y. A joint model for entity and relation extraction based on BERT. Neural Comput. Appl. 2022, 34, 3471–3481. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, H.; Yan, D.; Peng, G.; Wang, F. Automatic Construction of Knowledge Graph and Its Application in Electric Power System. In Proceedings of the 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 26–29 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 725–729. [Google Scholar]
- Viloria, A.; Lezama, O.B.P. An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Comput. Sci. 2019, 151, 1225–1230. [Google Scholar] [CrossRef]
- De Vos, A.; Rowbotham, C.T. Knowledge representation for power system modelling. In Proceedings of the PICA 2001, Innovative Computing for Power-Electric Energy Meets the Market, 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No. 01CH37195), Sydney, NSW, Australia, 20–24 May 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 50–56. [Google Scholar]
- McGuinness, D.L.; Van Harmelen, F. OWL web ontology language overview. W3C Recomm. 2004, 10, 2004. [Google Scholar]
- Li, Z.; Qu, D.; Li, Y.; Xie, C.; Chen, Q. A Position Weighted Information Based Word Embedding Model for Machine Translation. Int. J. Artif. Intell. Tools 2020, 29, 2040005. [Google Scholar] [CrossRef]
- Bhattarai, M.; Kharat, N.; Skau, E.; Nebgen, B.; Djidjev, H.; Rajopadhye, S.; Alexandrov, B. Distributed non-negative RESCAL with Automatic Model Selection for Exascale Data. arXiv 2022, arXiv:2202.09512. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.; Yu, Q.; Fan, Q. TransRESCAL: A Dense Feature Model for Knowledge Graph Completion. In Proceedings of the 2020 IEEE International Conference on Progress in Informatics and Computing (PIC), Online, 18–20 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 40–46. [Google Scholar]
- Chekalina, V.; Razzhigaev, A.; Sayapin, A.; Frolov, E.; Panchenko, A. MEKER: Memory Efficient Knowledge Embedding Representation for Link Prediction and Question Answering. arXiv 2022, arXiv:2204.10629. [Google Scholar]
- Zhang, Q.; Wang, R.; Yang, J.; Xue, L. Structural context-based knowledge graph embedding for link prediction. Neurocomputing 2022, 470, 109–120. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.; Gao, J.; Han, R.; Zhou, C. Knowledge graph embedding by logical-default attention graph convolution neural network for link prediction. Inf. Sci. 2022, 593, 201–215. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, X.; Luo, J. Knowledge Mining of Low Specific Speed Centrifugal Pump Impeller Based on Proper Orthogonal Decomposition Method. J. Therm. Sci. 2021, 30, 840–848. [Google Scholar] [CrossRef]
- Hu, L.; Ding, J.; Shi, C.; Shao, C.; Li, S. Graph neural entity disambiguation. Knowl. Based Syst. 2020, 195, 105620. [Google Scholar] [CrossRef]
- Oh, B.; Seo, S.; Hwang, J.; Lee, D.; Lee, K.H. Open-world knowledge graph completion for unseen entities and relations via attentive feature aggregation. Inf. Sci. 2022, 586, 468–484. [Google Scholar] [CrossRef]
- Shen, W.; Li, Y.; Liu, Y.; Han, J.; Wang, J.; Yuan, X. Entity linking meets deep learning: Techniques and solutions. IEEE Transactions on Knowledge and Data Eng. 2021. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, S.; Liu, J.; Wang, C.; Zhang, S.; Xie, C.; Liang, J.; Xiao, Y.; Song, R. Rule mining over knowledge graphs via reinforcement learning. Knowl. -Based Syst. 2022, 242, 108371. [Google Scholar] [CrossRef]
- Mitchell, T.M.; Betteridge, J.; Carlson, A.; Hruschka, E.; Wang, R. Populating the semantic web by macro-reading internet text. In Proceedings of the International Semantic Web Conference, Westfields, UK, 25–29 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 998–1002. [Google Scholar]
- Geiger, B.C. Information-Theoretic Reduction of Markov Chains. arXiv 2022, arXiv:2204.13896. [Google Scholar]
- Sarhangnia, F.; Ali Asgharzadeholiaee, N.; Boshkani Zadeh, M. A Novel Multilayer Model for Link Prediction in Online Social Networks Based on Reliable Paths. J. Inf. Knowl. Manag. 2022, 21, 2250025. [Google Scholar] [CrossRef]
- Mazumder, S.; Liu, B. Context-aware path ranking for knowledge base completion. arXiv 2017, arXiv:1712.07745. [Google Scholar]
- Azevedo, J.A.; Costa, M.E.O.S.; Madeira, J.J.E.R.S.; Martins, E.Q.V. An algorithm for the ranking of shortest paths. Eur. J. Oper. Res. 1993, 69, 97–106. [Google Scholar] [CrossRef]
- Lao, N.; Mitchell, T.; Cohen, W. Random walk inference and learning in a large scale knowledge base. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–29 July 2011; pp. 529–539. [Google Scholar]
- Zhao, X.; Jia, Y.; Li, A.; Jiang, R.; Song, Y. Multi-source knowledge fusion: A survey. World Wide Web 2020, 23, 2567–2592. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Shi, J.; Wang, C. Multi-ontology fusion and rule development to facilitate automated code compliance checking using BIM and rule-based reasoning. Adv. Eng. Inform. 2022, 51, 101449. [Google Scholar] [CrossRef]
- Cao, T.; Zeng, S.; Xu, X.; Mansur, M.; Chang, B. DISK: Domain-constrained Instance Sketch for Math Word Problem Generation. arXiv 2022, arXiv:2204.04686. [Google Scholar]
- Pryzant, R.; Yang, Z.; Xu, Y.; Zhu, C.; Zeng, M. Automatic Rule Induction for Efficient Semi-Supervised Learning. arXiv 2022, arXiv:2205.09067. [Google Scholar]
- Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Niu, G.; Li, B.; Zhang, Y.; Sheng, Y.; Shi, C.; Li, J.; Pu, S. Joint semantics and data-driven path representation for knowledge graph reasoning. Neurocomputing 2022, 483, 249–261. [Google Scholar] [CrossRef]
- Lloyd, J.W. Foundations of Logic Programming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wang, D.; Hu, P.; Wałęga, P.A.; Grau, B.C. Meteor: Practical reasoning in datalog with metric temporal operators. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22 February–1 March 2022; Volume 36, pp. 5906–5913. [Google Scholar]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 2013, 26, 1–9. [Google Scholar]
- Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28. [Google Scholar]
- Huang, W.; Li, G.; Jin, Z. Improved knowledge base completion by the path-augmented TransR model. In Proceedings of the Knowledge Science, Engineering and Management: 10th International Conference, KSEM 2017, Melbourne, VIC, Australia, 19–20 August 2017; Proceedings 10. Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 149–159. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 1: Long Papers, pp. 687–696. [Google Scholar]
- Xiao, H.; Huang, M.; Hao, Y.; Zhu, X. Transg: A generative mixture model for knowledge graph embedding. arXiv 2015, arXiv:1509.05488. [Google Scholar]
- Zhang, X.; Yang, Q.; Xu, D. TranS: Transition-based Knowledge Graph Embedding with Synthetic Relation Representation. arXiv 2022, arXiv:2204.08401. [Google Scholar]
- Bi, Z.; Zhang, T.; Zhou, P.; Li, Y. Knowledge transfer for out-of-knowledge-base entities: Improving graph-neural-network-based embedding using convolutional layers. IEEE Access 2020, 8, 159039–159049. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Li, Q.; Song, F.; Wang, J. Multimodal data enhanced representation learning for knowledge graphs. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Ye, Z.; Kumar, Y.J.; Sing, G.O.; Song, F.; Wang, J. A comprehensive survey of graph neural networks for knowledge graphs. IEEE Access 2022, 10, 75729–75741. [Google Scholar] [CrossRef]
- Miller, G.A. WordNet: An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Pellissier Tanon, T.; Weikum, G.; Suchanek, F. Yago 4: A reasonable knowledge base. In Proceedings of the European Semantic Web Conference, Online, 2–4 June 2020; Springer: Cham, Switzerland, 2020; pp. 583–596. [Google Scholar]
- Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. Dbpedia: A nucleus for a web of open data. In Proceedings of the The Semantic Web; Springer: Berlin, Heidelberg, 2007; pp. 722–735. [Google Scholar]
- Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 1247–1250. [Google Scholar]
- Jia, Y.; Wang, Y.; Cheng, X.; Jin, X.; Guo, J. OpenKN: An open knowledge computational engine for network big data. In Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), Beijing, China, 17–20 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 657–664. [Google Scholar]
- Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, X.; Ma, C.; Kou, L. A survey on the development status and application prospects of knowledge graph in smart grids. IET Gener. Transm. Distrib. 2021, 15, 383–407. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Zhang, Y.; Liu, Y.; Zhao, S.A.; Shan, L.F. Construction and application of knowledge graph for intelligent dispatching and control. Power Syst. Prot. Control 2020, 48, 29–35. [Google Scholar]
- Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint extraction of entities and relations based on a novel tagging scheme. arXiv 2017, arXiv:1706.05075. [Google Scholar]
- Xinjie, Z.; Lingxu, G.; Jian, W.; Xu, L.; Yuze, Z.; Shengnan, L. A Construction Method for the Knowledge Graph of Power Grid Supervision Business. In Proceedings of the 2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 9–11 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 277–283. [Google Scholar]
- Lin, Y.; Han, X.; Xie, R.; Liu, Z.; Sun, M. Knowledge representation learning: A quantitative review. arXiv 2018, arXiv:1812.10901. [Google Scholar]
- Zhang, Y. Knowledge Reasoning with Graph Neural Networks; Georgia Institute of Technology: Atlanta, GA, USA, 2021. [Google Scholar]
- Needham, M.; Hodler, A.E. Graph Algorithms: Practical Examples in Apache Spark and Neo4j; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Wu, H.; Wang, Y.; Chen, P.; Shi, H.; Wu, T. Application of Graph Database for the Storage of Knowledge Map of Power Grid Model. In Proceedings of the 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Macau, China, 21–24 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Tang, Y.; Liu, T.; He, M.; Wang, Q.; Zhang, H.; Liu, G.; Dai, R. Graph database based knowledge graph storage and query for power equipment management. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Toubeau, J.F.; Pardoen, L.; Hubert, L.; Marenne, N.; Sprooten, J.; De Grève, Z.; Vallée, F. Machine learning-assisted outage planning for maintenance activities in power systems with renewables. Energy 2022, 238, 121993. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Xu, Y.; Wei, X.; Wang, L. Short text mining framework with specific design for operation and maintenance of power equipment. CSEE J. Power Energy Syst. 2020, 7, 1267–1277. [Google Scholar]
- Cui, B. Electric device abnormal detection based on IoT and knowledge graph. In Proceedings of the 2019 IEEE International Conference on Energy Internet (ICEI), Nanjing, China, 27–31 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 217–220. [Google Scholar]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991. [Google Scholar]
- Bölücü, N.; Akgöl, D.; Tuç, S. Bidirectional lstm-cnns with extended features for named entity recognition. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Ji, Z.; Wang, X.; Cai, C.; Sun, H. Power entity recognition based on bidirectional long short-term memory and conditional random fields. Glob. Energy Interconnect. 2020, 3, 186–192. [Google Scholar] [CrossRef]
- Li, J.; Fang, S.; Ren, Y.; Li, K.; Sun, M. SWVBiL-CRF: Selectable Word Vectors-based BiLSTM-CRF Power Defect Text Named Entity Recognition. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Online, 10–13 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2502–2507. [Google Scholar]
- Tang, Y.; Liu, T.; Liu, G.; Li, J.; Dai, R.; Yuan, C. Enhancement of power equipment management using knowledge graph. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 905–910. [Google Scholar]
- Liu, Z.; Hu, C.; Jia, J.; Tao, F. Design of Equipment Condition Maintenance Knowledge Base in Power IoT Based on Edge Computing. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 5, pp. 1994–1998. [Google Scholar]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. A survey on smart grid potential applications and communication requirements. IEEE Trans. Ind. Inform. 2012, 9, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Shen, J.; Shi, Q.; Cheng, X. Research on the construction of three level customer service knowledge graph. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Tamil Nadu, India, 2–3 May 2017; IOP Publishing: Bristol, UK, 2017; Volume 242, p. 012077. [Google Scholar]
- Linsen, L. Research on innovative application of customer service robot in power supply business hall based on intelligent Q&A technology. Wirel. Internet Technol. 2019, 16, 139–140. [Google Scholar]
- Zhou, F.; Ye, J.; Xiao, L.; Liu, H.; Lou, T. Research on Intelligent Question Answering System of power grid model ontology based on Knowledge graph. China Sci. Technol. Inf. 2019, 16, 85–86. [Google Scholar]
- Palumbo, E.; Rizzo, G.; Troncy, R. Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31August 2017; pp. 32–36. [Google Scholar]
- Zhang, B.; Lin, H.; Zuo, S.; Liu, H.; Chen, Y.; Li, L.; Ouyang, H.; Yuan, B. Research on Intelligent Robot Engine of Electric Power Online Customer Services Based on Knowledge Graph. In Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, Xiamen, China, 8–11 May 2020; pp. 216–221. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Huang, X.; Liu, L.; Chen, Y.; Zhang, Z. Construction of Electric Power Meta Knowledge Graph Based on Electric Power Industry Terminology. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 622–626. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Xiang, S.; Dong, F.; Xu, S. A hybrid neural network based on XLNet for rumor detection. In Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 21–23 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1207–1211. [Google Scholar]
- Meng, W.; Zhang, D.; Guo, T.; Zong, Z.; Liu, Y.; Wang, Y.; Zhu, W. Design and Implementation of Knowledge Graph Platform of Power Marketing. In Proceedings of the 2021 International Conference on Computer Engineering and Application (ICCEA), Kunming, China, 25–27 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 295–298. [Google Scholar]
- Meng, W.; Zhang, D.; Guo, T.; Zong, Z.; Liu, Y.; Wang, Y.; Li, J.; Zhu, W. Research on the Typical Application of Knowledge Graph in Power Marketing. In Proceedings of the 2021 International Conference on Computer Engineering and Application (ICCEA), Kunming, China, 25–27 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 318–321. [Google Scholar]
- Lu, W.; Altenbek, G. A recommendation algorithm based on fine-grained feature analysis. Expert Syst. Appl. 2021, 163, 113759. [Google Scholar] [CrossRef]
- Taleb, T.; Ksentini, A.; Chen, M.; Jantti, R. Coping with emerging mobile social media applications through dynamic service function chaining. IEEE Trans. Wirel. Commun. 2015, 15, 2859–2871. [Google Scholar]
- Tao, T.; Wang, Q.; Fu, Y.; Xiong, Y.; Yu, F.; Yuan, B. Knowledge Graph Based Financial News Recommendation. Comput. Eng. 2020, 11, 1–10. [Google Scholar]
- Chen, M.; Bai, X.; Zhu, Y.; Wei, H. Research on power dispatching automation system based on cloud computing. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Washington, DA, USA, 16–20 January 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
- Fan, S.; Liu, X.; Chen, Y.; Liao, Z.; Zhao, Y.; Luo, H.; Fan, H. How to construct a power knowledge graph with dispatching data? Sci. Program. 2020, 2020, 8842463. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, D.; Yan, L.; Cao, J.; Zhang, S.; Zhang, Y. Research on key technologies for fault knowledge acquisition of power communication equipment. Procedia Comput. Sci. 2021, 183, 479–485. [Google Scholar] [CrossRef]
- Morkun, V.; Kotov, I.; Serdiuk, O.; Haponenko, I.A. Production rule ontology of automatized smart emergency dispatching support of the power system. Her. Adv. Inf. Technol. 2021, 4, 168–184. [Google Scholar] [CrossRef]
- Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2014–2023. [Google Scholar]
- Peng, F.; An, T.; Li, D.; Wang, H.; Tian, C.; Chen, Z. Knowledge Graph for Power Grid Dispatching of Digital Homes based on Graph Convolutional Network. In Proceedings of the 2020 8th International Conference on Digital Home (ICDH), Dalian, China, 19–20 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 203–208. [Google Scholar]
- Qiao, J.; Wang, X.; Min, R.; Bai, S.; Yao, D.; Pu, T. Framework and key technologies of knowledge-graph-based fault handling system in power grid. In Proceedings of the CSEE, Barcelona, Spain, 10–12 June 2020; Volume 40, pp. 5837–5849. [Google Scholar]
- Yang, M.; Cui, Y.; Huang, D.; Su, X.; Wu, G. Multi-time-scale coordinated optimal scheduling of integrated energy system considering frequency out-of-limit interval. Int. J. Electr. Power Energy Syst. 2022, 141, 108268. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, H.; Wu, Y.; Zhang, Z.; An, Y.; Xiong, Y.; Wang, F. Research on knowledge driven intelligent question answering system for electric power customer service. Procedia Comput. Sci. 2021, 187, 347–352. [Google Scholar] [CrossRef]
- Xu, H.; Ji, H.; Yao, X.; Li, X.; Lu, S. Knowledge graph-based semantic search algorithm in smart grid. Res. Explor. Lab. 2021, 40, 71–74. [Google Scholar]
- Chicaiza, J.; Valdiviezo-Diaz, P. A comprehensive survey of knowledge graph-based recommender systems: Technologies, development, and contributions. Information 2021, 12, 232. [Google Scholar] [CrossRef]
- Ye, K.; Cao, Y.; Xiao, F.; Bai, J.; Ma, F.; Hu, Y. Research on unified information model for big data analysis of power grid equipment monitoring. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Atlanta, GA, USA, 19–23 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2334–2337. [Google Scholar]
- Yang, J.; Zheng, K.; Li, S.; Wang, X.; Zeng, L.; Gong, Q.; Zong, K. A Text Matching-based Knowledge Fusion Method For Power Metering Domain. In Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), Qingdao, China, 3 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 805–808. [Google Scholar]
- Hang, Z.; Xingzhe, H.; Hua, W.; Wenbo, Y.; Changqing, H. Standard Power Meter Verification Strategy Optimization Based on Knowledge Graph. In Proceedings of the 2020 International Conference on Wireless Communications and Smart Grid (ICWCSG), Qingdao, China, 12–14 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 204–207. [Google Scholar]
- Yu, J.; Sun, J.; Dong, Y.; Zhao, D.; Chen, X.; Chen, X. Entity recognition model of power safety regulations knowledge graph based on BERT-BiLSTM-CRF. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Chengdu, China, 1–4 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 49–53. [Google Scholar]
- Sun, J.; Zhao, D.; Wang, L.; Chen, X.; Yi, M.; Xia, L. Remote supervision relation extraction method of power safety regulations knowledge graph based on ResPCNN-ATT. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Chengdu, China, 1–4 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 54–58. [Google Scholar]
- Chen, Z.; Dong, N.; Zhong, S.; Hou, B.; Chang, J. Research on the network security vulnerability expansion attack graph based on knowledge map. Inf. Technol. 2022, 363, 30–35. [Google Scholar]
- Yin, T.; Lu, N. Knowledge Graph Model of Power Grid for Human-machine Mutual Understanding. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6165–6169. [Google Scholar]
- Barrios, F.; López, F.; Argerich, L.; Wachenchauzer, R. Variations of the similarity function of textrank for automated summarization. arXiv 2016, arXiv:1602.03606. [Google Scholar]
- Iarovyi, S.; Mohammed, W.M.; Lobov, A.; Ferrer, B.R.; Lastra, J.L.M. Cyber–physical systems for open-knowledge-driven manufacturing execution systems. Proc. IEEE 2016, 104, 1142–1154. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, B.; Botterud, A.; Kang, C. Bounding regression errors in data-driven power grid steady-state models. IEEE Trans. Power Syst. 2020, 36, 1023–1033. [Google Scholar] [CrossRef]
- Fusco, F.; Eck, B.; Gormally, R.; Purcell, M.; Tirupathi, S. Knowledge-and data-driven services for energy systems using graph neural networks. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Online, 10–13 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1301–1308. [Google Scholar]
- Zhou, J.; Luo, G.; Hu, C.; Qiu, J. A classification model of power equipment defect texts based on convolutional neural network. In Proceedings of the International Conference on Artificial Intelligence and Security, New York, NY, USA, 26–28 July 2019; Springer: Cham, Switzerland, 2019; pp. 475–487. [Google Scholar]
- García-Durán, A.; Dumančić, S.; Niepert, M. Learning sequence encoders for temporal knowledge graph completion. arXiv 2018, arXiv:1809.03202. [Google Scholar]
- Sun, H.; Zhong, J.; Ma, Y.; Han, Z.; He, K. TimeTraveler: Reinforcement learning for temporal knowledge graph forecasting. arXiv 2021, arXiv:2109.04101. [Google Scholar]
TransE | TransH |
Entity representation spaces Relationship representation spaces TransR | |
Entity representation spaces Relationship representation spaces TransD |
Name | Start Date | Main Knowledge Source | Scale (Entity/Concept/Relation/Fact) |
---|---|---|---|
WordNet [81] | 1985 | Expert Knowledge | 155,287/117,659/18/- |
YAGO [82] | 2007 | WordNet + Wikipedia | 4,595,906/488,469/77/- ≈ 40 M |
Dbpedia [83] | 2007 | Wikipedia + Expert Knowledge | 17,315,785/754/2843/79,030,098 |
Freebase [84] | 2008 | Wikipedia + Domain Knowledge + Swarm Intelligence | 58,726,427/2209/39,151/3,197,653,841 |
NELL [85] | 2010 | WordNet + Wikipedia(Multilingual) | 9,671,518/6,117,108/1,307,706,673/- |
Wikidata [86] | 2012 | Freebase + Swarm Intelligence | 45,766,755/-/-/- |
Representation Method | Precision/% | Recall/% | F1-Score/% |
---|---|---|---|
KG | 93.62 | 92.77 | 93.19 |
VSM with tf-idf | 50.94 | 69.18 | 58.68 |
LSI | 44.81 | 63.68 | 52.60 |
LDA | 47.59 | 63.85 | 54.53 |
Model | Precision/% | Recall/% | F1/% |
---|---|---|---|
LSTM | 70.8 | 69.1 | 70.0 |
Bi-LSTM | 71.3 | 74.1 | 72.7 |
Bi-LSTM-CRF | 74.2 | 76.3 | 75.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Fu, R.; Xu, K.; Shi, X.; Ren, X. A Review of Knowledge Graph-Based Reasoning Technology in the Operation of Power Systems. Appl. Sci. 2023, 13, 4357. https://doi.org/10.3390/app13074357
Liu R, Fu R, Xu K, Shi X, Ren X. A Review of Knowledge Graph-Based Reasoning Technology in the Operation of Power Systems. Applied Sciences. 2023; 13(7):4357. https://doi.org/10.3390/app13074357
Chicago/Turabian StyleLiu, Rui, Rong Fu, Kang Xu, Xuanzhe Shi, and Xiaoning Ren. 2023. "A Review of Knowledge Graph-Based Reasoning Technology in the Operation of Power Systems" Applied Sciences 13, no. 7: 4357. https://doi.org/10.3390/app13074357