Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars
Abstract
1. Introduction
Research Significance and Objectives
2. Central Composite Design
2.1. Experiment Definition and Planning
2.2. Results
3. Response Models
3.1. Test Results Analysis
3.2. Model Fitting
3.3. D-Flow Model
Test for | Source | Sum of Squares | Degrees of Freedom | Mean of Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Significance of Regression | Model | 59,008.65 | 11 | 5364.42 | 176.44 | <0.0001 |
Residual | 851.29 | 28 | 30.4 | |||
Total | 59,859.94 | 39 | ||||
Lack of Fit | Lack of Fit | 774.79 | 21 | 36.89 | 3.38 | 0.0523 |
Pure Error | 76.5 | 7 | 10.93 | |||
Partial significance of each predictor variable | Vw/Vc | 2547.2 | 1 | 2547.2 | 83.78 | <0.0001 |
Sp/p | 670.7 | 1 | 670.7 | 22.06 | <0.0001 | |
Vw/Vp | 12,070.7 | 1 | 12,070.7 | 397.02 | <0.0001 | |
Vs/Vm | 39,025.2 | 1 | 39,025.2 | 1283.59 | <0.0001 | |
Vfs/Vs | 64.7 | 1 | 64.7 | 2.13 | 0.1558 | |
(Vw/Vc) × (Sp/p) | 267.38 | 1 | 267.38 | 8.79 | 0.0061 | |
(Vw/Vc) × (Vw/Vp) | 919.13 | 1 | 919.13 | 30.23 | <0.0001 | |
(Vw/Vc) × (Vs/Vm) | 309.38 | 1 | 309.38 | 10.18 | 0.0035 | |
(Sp/p) × (Vfs/Vs) | 114.38 | 1 | 114.38 | 3.76 | 0.0626 | |
(Vw/Vp) × (Vfs/Vs) | 285.01 | 1 | 285.01 | 9.37 | 0.0048 | |
(Vw/Vc)2 | 2734.89 | 1 | 2734.89 | 89.95 | <0.0001 |
Factor | Coefficient Estimate | Standard Error | 95% CI Low | 95% CI High |
---|---|---|---|---|
Intercept | 343.75 | 1.95 | 339.76 | 347.74 |
Vw/Vc | 8.92 | 0.9747 | 6.93 | 10.92 |
Sp/p | 4.58 | 0.9747 | 2.58 | 6.57 |
Vw/Vp | 19.42 | 0.9747 | 17.43 | 21.42 |
Vs/Vm | −34.92 | 0.9747 | −36.92 | −32.93 |
Vfs/Vs | −1.42 | 0.9747 | −3.42 | 0.5748 |
Vw/Vc × Sp/p | −2.89 | 0.9747 | −4.89 | −0.894 |
Vw/Vc × Vw/Vp | −5.36 | 0.9747 | −7.36 | −3.36 |
Vw/Vc × Vs/Vm | 3.11 | 0.9747 | 1.11 | 5.11 |
Sp/p × Vfs/Vs | 1.89 | 0.9747 | −0.106 | 3.89 |
Vw/Vp × Vfs/Vs | 2.98 | 0.9747 | 0.9877 | 4.98 |
(Vw/Vc)2 | −20.67 | 2.18 | −25.14 | −16.21 |
3.4. T-Funnel Model
Test for | Source | Sum of Squares | Degrees of Freedom | Mean of Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Significance of Regression | Model | 0.0640 | 11 | 0.0058 | 394.23 | <0.0001 |
Residual | 0.0005 | 34 | 0 | |||
Total | 0.0645 | 45 | ||||
Lack of Fit | Lack of Fit | 0.0005 | 27 | 0 | 3.14 | 0.0607 |
Pure Error | 0 | 7 | 5.457 × 10−6 | |||
Partial significance of each predictor variable | Vw/Vc | 0.0041 | 1 | 0.0039 | 305.22 | <0.0001 |
Sp/p | 0.0010 | 1 | 0.0011 | 82.2 | <0.0001 | |
Vw/Vp | 0.0251 | 1 | 0.0243 | 1895.62 | <0.0001 | |
Vs/Vm | 0.0317 | 1 | 0.0271 | 2113.06 | <0.0001 | |
Vfs/Vs | 0.0001 | 1 | 0.0001 | 6.9 | 0.0131 | |
(Vw/Vc) × (Sp/p) | 0.0001 | 1 | 0.0001 | 11.61 | 0.0018 | |
(Vw/Vc) × (Vs/Vm) | 0.0004 | 1 | 0.0003 | 23.66 | <0.0001 | |
(Vw/Vp) × (Vs/Vm) | 0.0011 | 1 | 0.0009 | 73.86 | <0.0001 | |
(Vw/Vc)2 | 0.0001 | 1 | 0.0001 | 6.79 | 0.0138 | |
(Vw/Vp)2 | 0.0001 | 1 | 0.0001 | 4.84 | 0.0351 | |
(Vfs/Vs)2 | 0.0001 | 1 | 0.0001 | 8.39 | 0.0067 |
Factor | Coefficient Estimate | Standard Error | 95% CI Low | 95% CI High |
---|---|---|---|---|
Intercept | 0.0688 | 0.0011 | 0.0667 | 0.071 |
Vw/Vc | 0.0115 | 0.0007 | 0.0101 | 0.0129 |
Sp/p | 0.005 | 0.0006 | 0.0038 | 0.0062 |
Vw/Vp | 0.0248 | 0.0006 | 0.0236 | 0.026 |
Vs/Vm | −0.0302 | 0.0007 | −0.0315 | −0.0289 |
Vfs/Vs | −0.0016 | 0.0006 | −0.0028 | −0.0004 |
(Vw/Vc) × (Sp/p) | −0.002 | 0.0007 | −0.0035 | −0.0006 |
(Vw/Vc) × (Vs/Vm) | −0.0037 | 0.0007 | −0.0051 | −0.0022 |
(Vw/Vp) × (Vs/Vm) | −0.0061 | 0.0007 | −0.0076 | −0.0047 |
(Vw/Vc)2 | −0.0017 | 0.0007 | −0.0031 | −0.0003 |
(Vw/Vp)2 | 0.0011 | 0.0005 | 0.0001 | 0.0021 |
(Vfs/Vs)2 | −0.0014 | 0.0005 | −0.0024 | −0.0003 |
3.5. Flexural Strength: F,24 h Model
Test for | Source | Sum of Squares | Degrees of Freedom | Mean of Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Significance of Regression | Model | 18.65 | 5 | 3.73 | 16.44 | <0.0008 |
Residual | 9.53 | 42 | 0.2269 | |||
Total | 28.18 | 47 | ||||
Lack of Fit | Lack of Fit | 7.88 | 35 | 0.2252 | 0.9574 | 0.5812 |
Pure Error | 1.65 | 7 | 0.2352 | |||
Partial significance of each predictor variable | Vw/Vc | 7.11 | 1 | 7.11 | 31.36 | <0.0001 |
Vw/Vp | 2.95 | 1 | 2.95 | 13.01 | 0.0008 | |
Vs/Vm | 2.95 | 1 | 2.95 | 12.98 | 0.0008 | |
(Vw/Vp) × (Vs/Vm) | 1.07 | 1 | 1.07 | 4.70 | 0.0358 | |
(Vs/Vm)2 | 4.57 | 1 | 4.57 | 20.16 | <0.0001 |
Factor | Coefficient Estimate | Standard Error | 95% CI Low | 95% CI High |
---|---|---|---|---|
Intercept | 11.43 | 0.0893 | 11.25 | 11.61 |
Vw/Vc | −0.4053 | 0.0724 | −0.5513 | −0.2592 |
Vw/Vp | −0.261 | 0.0724 | −0.4071 | −0.115 |
Vs/Vm | 0.2608 | 0.0724 | 0.1147 | 0.4068 |
(Vw/Vp) × (Vs/Vm) | 0.1826 | 0.0842 | 0.0127 | 0.3525 |
(Vs/Vm)2 | −0.2834 | 0.0631 | −0.4108 | −0.156 |
3.6. Compressive Strength: Rc,24 h Model
Test for | Source | Sum of Squares | Degrees of Freedom | Mean of Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Significance of Regression | Model | 1850.32 | 10 | 185.03 | 119.74 | <0.0001 |
Residual | 60.26 | 39 | 1.35 | |||
Cor Total | 1910.58 | 49 | ||||
Lack of Fit | Lack of Fit | 51.87 | 32 | 1.62 | 1.35 | 0.3599 |
Pure Error | 8.40 | 7 | 1.20 | |||
Partial significance of each predictor variable | Vw/Vc | 1650.75 | 1 | 1650.75 | 879.84 | <0.0001 |
Sp/p | 5.37 | 1 | 5.37 | 3.48 | 0.698 | |
Vw/Vp | 61.35 | 1 | 61.35 | 39.70 | <0.0001 | |
Vs/Vm | 3.05 | 1 | 3.05 | 1.98 | 0.1677 | |
Vfs/Vs | 76.06 | 1 | 76.06 | 49.22 | <0.0001 | |
(Vw/Vc) × (Vw/Vp) | 6.08 | 1 | 6.08 | 3.93 | 0.0545 | |
(Vw/Vc) × (Vfs/Vs) | 7.09 | 1 | 7.09 | 4.59 | 0.0385 | |
(Vs/Vm) × (Vfs/Vs) | 7.79 | 1 | 7.79 | 5.04 | 0.0305 | |
(Vw/Vc)2 | 18.43 | 1 | 18.43 | 11.93 | 0.0013 | |
(Vw/Vp)2 | 17.44 | 1 | 17.44 | 11.29 | 0.0018 |
Factor | Coefficient Estimate | Standard Error | 95% CI Low | 95% CI High |
---|---|---|---|---|
Intercept | 60.65 | 0.2733 | 60.09 | 61.2 |
Vw/Vc | −6.17 | 0.1889 | −6.56 | −5.79 |
Sp/p | −0.3522 | 0.1889 | −0.7342 | 0.0299 |
Vw/Vp | −1.19 | 0.1889 | −1.57 | −0.8081 |
Vs/Vm | 0.2655 | 0.1889 | −0.1165 | 0.6476 |
Vfs/Vs | −1.33 | 0.1889 | −1.71 | −0.9431 |
(Vw/Vc) × (Vw/Vp) | 0.4357 | 0.2197 | −0.0088 | 0.8802 |
(Vw/Vc) × (Vfs/Vs) | 0.4706 | 0.2197 | 0.0261 | 0.9151 |
(Vs/Vm) × (Vfs/Vs) | −0.4934 | 0.2197 | −0.9379 | −0.049 |
(Vw/Vc)2 | 0.5639 | 0.1633 | 0.2336 | 0.8941 |
(Vw/Vp)2 | 0.5486 | 0.1633 | 0.2183 | 0.8788 |
3.7. Significant Individual and Interaction Effects
3.8. Models Validation
4. Optimisation
4.1. Self-Compacting Ability
4.2. SCC with High Early Strength
5. Conclusions
- -
- Regression models were found to be adequate to describe SCHSCM properties over the experimental region, namely, slump-flow diameter, T-funnel time, and flexural and compressive strength at 24 h;
- -
- The Vs/Vm factor exhibited the strongest (negative) effect on the slump-flow diameter and T-funnel time;
- -
- The Vw/Vp factor was found to have the most significant effect on mechanical strength, corresponding to response variables F,24 h and Rc,24 h;
- -
- Vw/Vc was the second most influencing factor, with a positive effect on the slump-flow diameter and T-funnel time and a negative effect on F,24 h and Rc,24 h;
- -
- The variation of Sp/p used in the current CCD was small compared to the remaining factors. As such, Sp/p exhibited the lowest influence on SCHSCM properties when compared to other mixture parameters;
- -
- The proposed optimal mixture represented the best compromise between self-compacting ability—a flow diameter of 250 mm and funnel time equal to 10 s—and a compressive strength higher than 50 MPa at 24 h without any special curing treatment and was found for Vc/Vp = 1.098; sp/p = 0.0243; Vw/Vp = 0.607; Vs/Vm = 0.478; and Vfs/vs = 0.047.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis Of Variance |
CCD | Central Composite Design |
Ci | Central points of CCD |
CCi | Axial points of CCD |
d | Days |
D | Desirability function |
D-flow | Flow Diameter (mm) |
DoE | Design of Experiments |
F,24 h | Flexure strength at 24 h (MPa) |
Fi | Factorial points of CCD |
GDP | Gross Domestic Product |
GHG | Greenhouse Gas |
h | Hours |
LF | Limestone Filler |
p | Powder Mass |
PC | Portland Cement |
PSD | Particle Size Distribution |
Rc,24 h | Compressive strength at 24 h (MPa) |
SCC | Self-Compacting Concrete |
SCHSCM | Self-Compacting High early Strength Cement-based Mortars |
SCM | Supplementary Cementitious Materials |
SDG | Sustainable Development Goals |
Sp | Superplasticizer |
Sp/p | Superplasticiser to powder mass ratio |
RH | Relative Humidity (%) |
T-funnel | Funnel Time |
Vc | Cement Volume |
VC | Vibrated Concrete |
Vi | Validation points |
Vfs | Fine Sand Volume |
VIF | Value of the Inflammation Factor |
Vm | Mortar Volume |
Vp | Powder Volume |
Vs | Sand Volume |
Vw | Water Volume |
Vw/Vc | Water to cement volume ratio |
Vw/Vp | Water to powder volume ratio |
Vs/Vm | Sand to mortar volume ratio |
Vfs/Vs | Fine sand to total sand volume ratio |
References
- Omer, M.A.B.; Noguchi, T. A conceptual framework for understanding the contribution of building materials in the achievement of Sustainable Development Goals (SDGs). Sustain. Cities Soc. 2020, 52, 101869. [Google Scholar] [CrossRef]
- Antiohos, S.K.; Tapali, J.G.; Zervaki, M.; Sousa-Coutinho, J.; Tsimas, S.; Papadakis, V.G. Low embodied energy cement containing untreated RHA: A strength development and durability study. Constr. Build. Mater. 2013, 49, 455–463. [Google Scholar] [CrossRef]
- Nunes, S.; Matos, A.M.; Duarte, T.; Figueiras, H.; Sousa-Coutinho, J. Mixture design of self-compacting glass mortar. Cem. Concr. Compos. 2013, 43, 1–11. [Google Scholar] [CrossRef]
- Matos, A.M. Design of Eco-Efficient Ultra-High Performance Fibre Reinforced Cement-Based Composite for Rehabilitation/Strengthening Applications; University of Porto: Porto, Portugal, 2020. [Google Scholar]
- Okamura, H.; Ouchi, M. Self-Compacting Concrete. J. Adv. Concr. Technol. 2003, 1, 5–15. [Google Scholar] [CrossRef]
- Nunes, S.; Figueiras, H.; Milheiro Oliveira, P.; Coutinho, J.S.; Figueiras, J. A methodology to assess robustness of SCC mixtures. Cem. Concr. Res. 2006, 36, 2115–2122. [Google Scholar] [CrossRef]
- Yogitha, B.; Karthikeyan, M.; Muni Reddy, M.G. Progress of sugarcane bagasse ash applications in production of Eco-Friendly concrete—Review. Mater. Today Proc. 2020, 33, 695–699. [Google Scholar] [CrossRef]
- Gettu, R.; Pillai, R.G.; Santhanam, M.; Dhanya, B.S. Ways of Improving the Sustainability of Concrete Technology Through the Effective Use of Admixtures. Indian Inst. Technol. Madras Chennai 2018, 21. [Google Scholar]
- Loganayagan, S.; Chandra Mohan, N.; Dhivyabharathi, S. Sugarcane bagasse ash as alternate supplementary cementitious material in concrete. Mater. Today Proc. 2021, 45, 1004–1007. [Google Scholar] [CrossRef]
- Wagner, J.R.; Mount, E.M.; Giles, H.F. Design of Experiments. In Extrusion; William Andrew Publishing: Norwich, NY, USA, 2014; pp. 291–308. ISBN 978-1-4377-3481-2. [Google Scholar]
- Shi, C.; Wu, Z.; Lv, K.; Wu, L. A review on mixture design methods for self-compacting concrete. Constr. Build. Mater. 2015, 84, 387–398. [Google Scholar] [CrossRef]
- Khayat, K.H.; Ghezal, A.; Hadriche, M.S. Utility of statistical models in proportioning self-consolidating concrete. Mater. Struct. 2000, 33, 338–344. [Google Scholar] [CrossRef]
- Nunes, S.; Costa, C. Self-compacting concrete also standing for sustainable circular concrete. In Waste and Byproducts in Cement-Based Materials; Woodhead Publishing: Sawston, UK, 2021; pp. 439–480. [Google Scholar]
- Matos, A.M.; Maia, L.; Nunes, S.; Milheiro-Oliveira, P. Design of self-compacting high-performance concrete: Study of mortar phase. Constr. Build. Mater. 2018, 167, 617–630. [Google Scholar] [CrossRef]
- Dinakar, P. Design of self-compacting concrete with fly ash. Mag. Concr. Res. 2012, 64, 401–409. [Google Scholar] [CrossRef]
- Rojo-López, G.; Nunes, S.; González-Fonteboa, B.; Martínez-Abella, F. Quaternary blends of portland cement, metakaolin, biomass ash and granite powder for production of self-compacting concrete. J. Clean. Prod. 2020, 266, 121666. [Google Scholar] [CrossRef]
- Ghosh, D.; Abd-Elssamd, A.; Ma, Z.J.; Hun, D. Development of high-early-strength fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2021, 266, 121051. [Google Scholar] [CrossRef]
- Al-Alaily, H.S.; Hassan, A.A.A. Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin. Constr. Build. Mater. 2016, 114, 564–579. [Google Scholar] [CrossRef]
- Abouhussien, A.A.; Hassan, A.A.A. Optimising the durability and service life of self-consolidating concrete containing metakaolin using statistical analysis. Constr. Build. Mater. 2015, 76, 297–306. [Google Scholar] [CrossRef]
- Abouhussien, A.A.; Hassan, A.A.A. Application of Statistical Analysis for Mixture Design of High-Strength Self-Consolidating Concrete Containing Metakaolin. J. Mater. Civ. Eng. 2014, 26, 04014016. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bezusyak, A.; Lushnikova, N.; Ribakov, Y. Using mathematical modeling for design of self compacting high strength concrete with metakaolin admixture. Constr. Build. Mater. 2012, 37, 851–864. [Google Scholar] [CrossRef]
- Matos, A.M.; Nunes, S.; Costa, C.; Barroso-Aguiar, J.L. Spent equilibrium catalyst as internal curing agent in UHPFRC. Cem. Concr. Compos. 2019, 104, 103362. [Google Scholar] [CrossRef]
- Nunes, S. Performance-Based Design of Self-Compacting Concrete (SCC): A Contribution to Enchance SCC Mixtures Robustness; Faculty of Enginnering of University of Porto: Porto, Portugal, 2008. [Google Scholar]
- Galobardes, I.; Salvador, R.P.; Cavalaro, S.H.P.; Figueiredo, A.; Goodier, C.I. Adaptation of the standard EN 196-1 for mortar with accelerator. Constr. Build. Mater. 2016, 127, 125–136. [Google Scholar] [CrossRef]
- Maia, L. Experimental dataset from a central composite design to develop mortars with self-compacting properties and high early age strength. Data Brief 2021, 39, 107563. [Google Scholar] [CrossRef] [PubMed]
- EFNARC. Specification and Guidelines for Self-Compacting Concrete; EFNARC: Farnham, UK, 2002. [Google Scholar]
- NP EN 196-1—Methods of Testing Cement. Part 1: Determination of Strength; Instituto Português da Qualidade: Lisbon, Portugal, 2006; pp. 1–37. [Google Scholar]
- De Barros Neto, B.; Scarminio, I.S.; Bruns, R.E. Como Fazer Experimentos, 4th ed.; Bookman, Ed.; Artmed Editora SA: Porto Alegre, Brazil, 2010; ISBN 978-85-7780-652-2. [Google Scholar]
- Montgomery, D.C. Introduction to Statistical Quality Control, 7th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14681-1. [Google Scholar]
Design Variables | −2.378 | −1 | 0 | +1 | +2.378 |
---|---|---|---|---|---|
X1: Vw/Vc | 0.682 | 0.805 | 0.895 | 0.894 | 1.108 |
X2: Sp/p | 0.019 | 0.022 | 0.024 | 0.025 | 0.029 |
X3: Vw/Vp | 0.434 | 0.513 | 0.570 | 0.627 | 0.706 |
X4: Vs/Vm | 0.366 | 0.432 | 0.480 | 0.528 | 0.594 |
X5: Vfs/Vs | 0.043 | 0.250 | 0.400 | 0.550 | 0.757 |
Response Variables | Units | Measurement Method |
---|---|---|
Y1: D-flow | mm | EFNARC |
Y2: T-funnel | s | EFNARC |
Y3: F,24 h | MPa | EN 196-1 |
Y4: Rc,24 h | MPa | EN-196-1 |
CCD Point | Coded Values | Results | |||||||
---|---|---|---|---|---|---|---|---|---|
Vw/Vc | Sp/p | Vw/Vp | Vs/Vm | Vfs/Vs | D-Flow | T-Funnel | F,24 h | Rc,24 h | |
(mm) | (s) | (MPa) | (MPa) | ||||||
C1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 346.50 | 14.98 | 11.77 | 59.89 |
C2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 346.00 | 13.77 | 12.29 | 62.10 |
C3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 339.50 | 14.15 | 11.28 | 59.31 |
C4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 348.00 | 14.74 | 12.08 | 60.90 |
C5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 339.50 | 14.53 | 11.96 | 60.00 |
C6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 341.00 | 14.38 | 11.89 | 62.17 |
C7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 345.00 | 13.56 | 11.05 | 60.18 |
C8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 344.50 | 14.23 | 11.03 | 59.63 |
F1 | −1.00 | −1.00 | −1.00 | −1.00 | −1.00 | 330.00 | 18.89 | 11.60 | 72.54 |
F2 | 1.00 | −1.00 | −1.00 | −1.00 | −1.00 | 349.00 | 12.26 | 11.05 | 57.80 |
F3 | −1.00 | 1.00 | −1.00 | −1.00 | −1.00 | 338.50 | 16.70 | 12.64 | 70.09 |
F4 | 1.00 | 1.00 | −1.00 | −1.00 | −1.00 | 354.50 | 11.32 | 10.50 | 56.06 |
F5 | −1.00 | −1.00 | 1.00 | −1.00 | −1.00 | 375.00 | 9.24 | 11.26 | 67.05 |
F6 | 1.00 | −1.00 | 1.00 | −1.00 | −1.00 | 369.50 | 7.08 | 9.43 | 55.72 |
F7 | −1.00 | 1.00 | 1.00 | −1.00 | −1.00 | 376.00 | 7.80 | 10.60 | 68.47 |
F8 | 1.00 | 1.00 | 1.00 | −1.00 | −1.00 | 375.00 | 6.91 | 10.18 | 53.40 |
F9 | −1.00 | −1.00 | −1.00 | 1.00 | −1.00 | 253.00 | 114.06 | 11.68 | 73.13 |
F10 | 1.00 | −1.00 | −1.00 | 1.00 | −1.00 | 289.50 | 38.91 | 11.64 | 58.49 |
F11 | −1.00 | 1.00 | −1.00 | 1.00 | −1.00 | 260.50 | 74.32 | 10.48 | 71.81 |
F12 | 1.00 | 1.00 | −1.00 | 1.00 | −1.00 | 289.50 | 33.03 | 10.91 | 59.30 |
F13 | −1.00 | −1.00 | 1.00 | 1.00 | −1.00 | 295.00 | 25.40 | 11.83 | 67.80 |
F14 | 1.00 | −1.00 | 1.00 | 1.00 | −1.00 | 313.50 | 17.53 | 11.41 | 55.93 |
F15 | −1.00 | 1.00 | 1.00 | 1.00 | −1.00 | 303.50 | 26.33 | 11.41 | 68.43 |
F16 | 1.00 | 1.00 | 1.00 | 1.00 | −1.00 | 320.00 | 14.15 | 10.93 | 56.48 |
F17 | −1.00 | −1.00 | −1.00 | −1.00 | 1.00 | 300.00 | 28.43 | 11.06 | 66.54 |
F18 | 1.00 | −1.00 | −1.00 | −1.00 | 1.00 | 351.50 | 12.89 | 10.69 | 55.93 |
F19 | −1.00 | 1.00 | −1.00 | −1.00 | 1.00 | 334.50 | 17.67 | 11.57 | 69.59 |
F20 | 1.00 | 1.00 | −1.00 | −1.00 | 1.00 | 349.50 | 11.73 | 10.73 | 55.10 |
F21 | −1.00 | −1.00 | 1.00 | −1.00 | 1.00 | 378.00 | 9.90 | 11.20 | 65.92 |
F22 | 1.00 | −1.00 | 1.00 | −1.00 | 1.00 | 379.50 | 7.16 | 9.93 | 54.52 |
F23 | −1.00 | 1.00 | 1.00 | −1.00 | 1.00 | 385.50 | 8.54 | 10.71 | 64.39 |
F24 | 1.00 | 1.00 | 1.00 | −1.00 | 1.00 | 382.00 | 6.94 | 10.26 | 53.64 |
F25 | −1.00 | −1.00 | −1.00 | 1.00 | 1.00 | 233.00 | * | 12.10 | 67.34 |
F26 | 1.00 | −1.00 | −1.00 | 1.00 | 1.00 | 275.00 | 52.64 | 11.42 | 55.30 |
F27 | −1.00 | 1.00 | −1.00 | 1.00 | 1.00 | 265.50 | 67.34 | 12.79 | 68.54 |
F28 | 1.00 | 1.00 | −1.00 | 1.00 | 1.00 | 285.00 | 33.30 | 10.48 | 56.02 |
F29 | −1.00 | −1.00 | 1.00 | 1.00 | 1.00 | 289.50 | 26.20 | 11.98 | 65.12 |
F30 | 1.00 | −1.00 | 1.00 | 1.00 | 1.00 | 315.00 | 16.51 | 10.98 | 53.39 |
F31 | −1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 309.00 | 18.57 | 11.88 | 60.96 |
F32 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 314.00 | 17.07 | 10.66 | 53.41 |
CC1 | −2.38 | 0.00 | 0.00 | 0.00 | 0.00 | 168.00 | * | 11.91 | 78.42 |
CC2 | 2.38 | 0.00 | 0.00 | 0.00 | 0.00 | 342.00 | 11.55 | 10.25 | 48.92 |
CC3 | 0.00 | −2.38 | 0.00 | 0.00 | 0.00 | 330.50 | 17.64 | 11.45 | 62.44 |
CC4 | 0.00 | 2.38 | 0.00 | 0.00 | 0.00 | 337.00 | 12.71 | 11.22 | 58.89 |
CC5 | 0.00 | 0.00 | −2.38 | 0.00 | 0.00 | 295.00 | 79.63 | 12.11 | 64.13 |
CC6 | 0.00 | 0.00 | 2.38 | 0.00 | 0.00 | 368.50 | 7.27 | 10.18 | 63.04 |
CC7 | 0.00 | 0.00 | 0.00 | −2.38 | 0.00 | 398.00 | 7.49 | 9.43 | 59.77 |
CC8 | 0.00 | 0.00 | 0.00 | 2.38 | 0.00 | 169.50 | * | 10.32 | 62.62 |
CC9 | 0.00 | 0.00 | 0.00 | 0.00 | −2.38 | 338.00 | 16.55 | Na | 62.21 |
CC10 | 0.00 | 0.00 | 0.00 | 0.00 | 2.38 | 330.50 | 16.14 | Na | 57.75 |
V1 | 0.63 | 3.05 | 0.21 | 0.52 | −2 | 16.17 | 320.50 | 11.70 | 58.45 |
V2 | 0.63 | 1.5 | 0.21 | 0.52 | −2 | 16.58 | 327.00 | 11.09 | 60.53 |
V3 | 0.63 | 1.5 | 0.21 | 0.52 | −2.67 | 18.33 | 310.50 | 11.17 | 61.54 |
V4 | −0.13 | 0.21 | −0.66 | −0.62 | 0.00 | 12.96 | 353.00 | 12.02 | 61.33 |
V5 | 1.08 | −0.42 | −1.13 | −0.62 | 0.00 | 14.09 | 337.50 | 11.47 | 56.70 |
V6 | −1.34 | 0.52 | −0.14 | −0.62 | 0.00 | 14.15 | 347.00 | 10.35 | 70.59 |
V7 | −0.82 | 0.58 | −0.39 | −0.62 | 0.00 | 13.64 | 338.50 | 9.68 | 65.96 |
V8 | 0.57 | −0.15 | −0.92 | −0.62 | 0.00 | 13.02 | 335.00 | 11.16 | 59.11 |
V9 | −0.13 | −0.42 | −0.66 | −0.62 | 0.00 | 14.76 | 350.00 | 13.29 | 63.51 |
V10 | −0.13 | −0.42 | −0.66 | −0.62 | 0.00 | 15.01 | 344.50 | 11.14 | 65.16 |
V11 | 1.08 | −0.42 | −1.13 | −0.62 | 0.00 | 14.32 | 346.50 | 11.76 | 57.25 |
V12 | −1.34 | 0.52 | −0.14 | −0.62 | 0.00 | 15.65 | 344.50 | 13.97 | 72.63 |
V13 | −0.82 | 0.58 | −0.39 | −0.62 | 0.00 | 15.26 | 345.50 | 13.12 | 68.96 |
V14 | 0.57 | −0.15 | −0.92 | −0.62 | 0.00 | 15.08 | 347.50 | Na | 59.54 |
D-Flow (mm) | T-Funnel (s) | F,24 h (MPa) | Rc,24 h (MPa) | |
---|---|---|---|---|
All 50 mixtures | ||||
Minimum | 168.00 | 6.91 | 9.43 | 48.92 |
Maximum | 398.00 | 114.06 | 12.79 | 78.42 |
Mean | 323.31 | 22.39 | 11.17 | 61.61 |
Standard deviation | 48.97 | 21.63 | 0.77 | 6.24 |
Coefficient of variation (%) | 15.15 | 96.62 | 6.93 | 10.14 |
Central points (Ci) | ||||
Minimum | 339.50 | 13.56 | 11.03 | 59.31 |
Maximum | 348.00 | 14.98 | 12.29 | 62.17 |
Mean | 343.75 | 14.29 | 11.67 | 60.52 |
Standard deviation | 3.31 | 0.47 | 0.48 | 1.10 |
Coefficient of variation (%) | 0.96 | 3.31 | 4.16 | 1.81 |
Model Terms | D-Flow (mm) | 1/(T-Funnel) (s) | F,24 h (MPa) | Rc,24 h (MPa) |
---|---|---|---|---|
Independent | −2154.81 | −1.3582 | 5.400 | 293.77 |
Vw/Vc | 5375.51 | 1.2092 | −4.529 | −257.75 |
Sp/p | 15,060.05 | 13.4743 | - | −186.47 |
Vw/Vp | 1141.35 | 1.1255 | −36.616 | −289.80 |
Vs/Vm | −1375.32 | 1.4119 | 85.487 | 32.94 |
Vfs/Vs | −365.99 | 0.0374 | - | −7.31 |
(Vw/Vc) × (Vw/Vp) | −1050.80 | - | - | 85.43 |
(Vw/Vc) × (Sp/p) | −17,105.24 | −12.0954 | - | - |
(Vw/Vc) × (Vs/Vm) | 723.96 | −0.8550 | - | - |
(Vw/Vp) × (Vs/Vm) | - | −2.2390 | 66.741 | - |
(Vw/Vp) × (Vfs/Vs) | 349.05 | - | - | 35.06 |
(Sp/p) × (Vfs/Vs) | 6673.75 | - | - | - |
(Vs/Vm) × (Vfs/Vs) | - | - | - | −68.53 |
(Vw/Vc)2 | −2581.92 | −0.2148 | - | 70.43 |
(Vw/Vp)2 | - | 0.3375 | - | 168.84 |
(Vs/Vm)2 | - | - | −123.018 | - |
(Vfs/Vs)2 | - | −0.0602 | - | - |
Self-Compacting Ability | Self-Compacting Ability and High Early Strength | |
---|---|---|
Constraints for optimisation | ||
Mixture parameters: | ||
Vw/Vc | In CCD range | In CCD range |
Sp/p | In CCD range | In CCD range |
Vw/Vp | In CCD range | In CCD range |
Vs/Vm | In CCD range | In CCD range |
Vfs/Vs | In CCD range | In CCD range |
Response Variables: | ||
D-flow (mm) | Target 260 | In range {259, 261} |
T-funnel (s) | Target 10 | In range {9.8, 10.2} |
F,24 h (MPa) | None | None |
Rc,24 h (MPa) | None | >50 |
Response | Predicted Results | 95% CI Low | 95% CI High |
---|---|---|---|
D-flow | 259.15 | 237.78 | 280.51 |
T-funnel | 9.87 | 9.1 | 10.79 |
F,24 h | 10.31 | 9.93 | 10.7 |
Rc,24 h | 50.00 | 46.86 | 53.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cangussu, N.; Matos, A.M.; Milheiro-Oliveira, P.; Maia, L. Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars. Appl. Sci. 2023, 13, 4142. https://doi.org/10.3390/app13074142
Cangussu N, Matos AM, Milheiro-Oliveira P, Maia L. Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars. Applied Sciences. 2023; 13(7):4142. https://doi.org/10.3390/app13074142
Chicago/Turabian StyleCangussu, Nara, Ana Mafalda Matos, Paula Milheiro-Oliveira, and Lino Maia. 2023. "Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars" Applied Sciences 13, no. 7: 4142. https://doi.org/10.3390/app13074142
APA StyleCangussu, N., Matos, A. M., Milheiro-Oliveira, P., & Maia, L. (2023). Numerical Design and Optimisation of Self-Compacting High Early-Strength Cement-Based Mortars. Applied Sciences, 13(7), 4142. https://doi.org/10.3390/app13074142