Dual-Tracer PET Image Separation by Deep Learning: A Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dual-Tracer Single-Acquisition PET Measurement
2.2. Deep Learning Dual-Tracer Separation
3. 2D Simulation Study
3.1. 2D Dataset Simulation
3.2. Implementation of Deep-Learning-Based Dual-Tracer Separation Method
3.3. Implementation of Compartment Model-Based Dual-Tracer Separation Method
3.4. Image Evaluation
4. Results
4.1. DL-Based Dual-Tracer Separation Results
4.2. CM-Based Dual-Tracer Separation Results
4.3. DL-Based Method and CM-Based Method Comparison
4.4. Bias and Standard Deviation Analysis (Pixel-Level)
4.5. Bias and Standard Deviation Analysis (ROI-Level)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Positron Emission Tomography |
FDG | 18F-Fluorodeoxyglucos |
MET | 11C-Methionine |
TACs | Time-Activity Curves |
AIF | Arterial Input Function |
PCA | Principal Component Analysis |
rXGBoost | Recurrent Extreme Gradient Boosting |
ROI | Region of Interest |
DL | Deep Learning |
CED | Convolutional Encoder–Decoder |
GAN | Generative Adversarial Network |
WM | White Matter |
GM | Grey Matter |
TM | Tumour |
MLEM | Maximum-Likelihood Expectation Maximization |
GT | Ground-Truth |
NF | Noise-Free |
MSE | Mean Square Error |
WNLS | Weighted Non-Linear Least Squares |
NRMSE | Normalised Root Mean Square Error |
SD | Standard Deviation |
FI | Frame Integrated |
FWHM | Full Width at Half Maximum |
Appendix A
Appendix A.1. Feng’s Input Function Parameters
FDG | 4543.7089 | 5.7558 | 8.9690 | 19.6371 | 0.9830 | 0.0482 |
MET | 8843.7089 | 10.7558 | 20.9690 | 20.6371 | 0.7830 | 0.0552 |
Appendix A.2. Batch Sizes for Network Training
# of Training Pairs (Images) | 1 | 4 | 8 | 40 | 80 |
---|---|---|---|---|---|
# of training pairs (TACs) | 1 × | 4 × | 8 × | 40 × | 80 × |
Batch size | 1 | 4 | 8 | 8 | 8 |
Appendix A.3. NRMSE of Separated Static Images for the Tumour ROI
References
- Machac, J. Cardiac positron emission tomography imaging. Semin. Nucl. Med. 2005, 35, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Gunn, R.N.; Slifstein, M.; Searle, G.E.; Price, J.C. Quantitative imaging of protein targets in the human brain with PET. Phys. Med. Biol. 2015, 60, R363. [Google Scholar] [CrossRef] [PubMed]
- Beyer, T.; Townsend, D.W.; Brun, T.; Kinahan, P.E.; Charron, M.; Roddy, R.; Jerin, J.; Young, J.; Byars, L.; Nutt, R. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 2000, 41, 1369–1379. [Google Scholar]
- Cook, G.J.; Maisey, M.N.; Fogelman, I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur. J. Nucl. Med. 1999, 26, 1363–1378. [Google Scholar] [CrossRef]
- Chung, J.K.; Kim, Y.; Kim, S.K.; Lee, Y.; Paek, S.; Yeo, J.; Jeong, J.; Lee, D.; Jung, H.; Lee, M. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo-or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 176–182. [Google Scholar] [CrossRef]
- Kearfott, K.J. Feasibility of simultaneous and sequentially administered dual tracer protocols for measurement of regional cerebral haematocrit using positron emission tomography. Phys. Med. Biol. 1990, 35, 249. [Google Scholar] [CrossRef]
- Ho, C.L.; Chen, S.; Yeung, D.W.; Cheng, T.K. Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J. Nucl. Med. 2007, 48, 902–909. [Google Scholar] [CrossRef]
- Schöll, M.; Carter, S.F.; Westman, E.; Rodriguez-Vieitez, E.; Almkvist, O.; Thordardottir, S.; Wall, A.; Graff, C.; Långström, B.; Nordberg, A. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep. 2015, 5, 16404. [Google Scholar] [CrossRef] [PubMed]
- Mapelli, P.; Partelli, S.; Salgarello, M.; Doraku, J.; Muffatti, F.; Schiavo Lena, M.; Pasetto, S.; Bezzi, C.; Bettinardi, V.; Andreasi, V.; et al. Dual tracer 68Ga-DOTATOC and 18F-FDG PET improve preoperative evaluation of aggressiveness in resectable pancreatic neuroendocrine neoplasms. Diagnostics 2021, 11, 192. [Google Scholar] [CrossRef]
- Guo, J.; Guo, N.; Lang, L.; Kiesewetter, D.O.; Xie, Q.; Li, Q.; Eden, H.S.; Niu, G.; Chen, X. 18F-alfatide II and 18F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J. Nucl. Med. 2014, 55, 154–160. [Google Scholar] [CrossRef]
- Huang, S.C.; Carson, R.E.; Hoffman, E.J.; Kuhl, D.E.; Phelps, M.E. An investigation of a double-tracer technique for positron computerized tomography. J. Nucl. Med. 1982, 23, 816–822. [Google Scholar]
- Koeppe, R.A.; Ficaro, E.P.; Raffel, D.M.; Minoshima, S.; Kilbourn, M.R. Temporally overlapping dual-tracer PET studies. In Quantitative Functional Brain Imaging with Positron Emission Tomography; Academic Press: San Diego, CA, USA, 1998; pp. 359–366. [Google Scholar]
- Rust, T.C.; DiBella, E.V.R.; McGann, C.J.; Christian, P.E.; Hoffman, J.M.; Kadrmas, D.J. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows. Phys. Med. Biol. 2006, 51, 5347. [Google Scholar] [CrossRef]
- Kadrmas, D.J.; Hoffman, J.M. Methodology for quantitative rapid multi-tracer PET tumor characterizations. Theranostics 2013, 3, 757. [Google Scholar] [CrossRef]
- Figueiras, F.P.; Jiménez, X.; Pareto, D.; Gómez, V.; Llop, J.; Herance, R.; Rojas, S.; Gispert, J.D. Simultaneous dual-tracer PET imaging of the rat brain and its application in the study of cerebral ischemia. Mol. Imaging Biol. 2011, 13, 500–510. [Google Scholar] [CrossRef]
- Verhaeghe, J.; D’Asseler, Y.; Staelens, S.; Lemahieu, I. Noise properties of simultaneous dual tracer PET imaging. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, 2005, Fajardo, PR, USA, 23–29 October 2005; Volume 5, pp. 2611–2614. [Google Scholar]
- Koeppe, R.A.; Raffel, D.M.; Snyder, S.E.; Ficaro, E.P.; Kilbourn, M.R.; Kuhl, D.E. Dual-[11C]tracer single-acquisition positron emission tomography studies. J. Cereb. Blood Flow Metab. 2001, 21, 1480–1492. [Google Scholar] [CrossRef]
- Ikoma, Y.; Toyama, H.; Suhara, T. Simultaneous quantification of two brain functions with dual tracer injection in PET dynamic study. Int. Congr. Ser. 2004, 1265, 74–78. [Google Scholar] [CrossRef]
- Kadrmas, D.J.; Rust, T.C. Feasibility of rapid multitracer PET tumor imaging. IEEE Trans. Nucl. Sci. 2005, 52, 1341–1347. [Google Scholar] [CrossRef]
- Rust, T.C.; Kadrmas, D.J. Rapid dual-tracer PTSM + ATSM PET imaging of tumour blood flow and hypoxia: A simulation study. Phys. Med. Biol. 2005, 51, 61. [Google Scholar] [CrossRef]
- Joshi, A.D.; Koeppe, R.A.; Fessier, J.A.; Kilbourn, M.R. Signal separation and parameter estimation in noninvasive dual-tracer PET scans using reference-region approaches. J. Cereb. Blood Flow Metab. 2009, 29, 1346–1357. [Google Scholar] [CrossRef]
- Kadrmas, D.J.; Rust, T.C.; Hoffman, J.M. Single-scan dual-tracer FLT + FDG PET tumor characterization. Phys. Med. Biol. 2013, 58, 429. [Google Scholar] [CrossRef]
- Converse, A.K.; Barnhart, T.E.; Dabbs, K.A.; DeJesus, O.T.; Larson, J.A.; Nickles, R.J.; Schneider, M.L.; Roberts, A.D. PET Measurement of rCBF in the presence of a neurochemical tracer. J. Neurosci. Methods 2004, 132, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Black, N.F.; McJames, S.; Rust, T.C.; Kadrmas, D.J. Evaluation of rapid dual-tracer 62Cu-PTSM + 62Cu-ATSM PET in dogs with spontaneously occurring tumors. Phys. Med. Biol. 2007, 53, 217. [Google Scholar] [CrossRef] [PubMed]
- Black, N.F.; McJames, S.; Kadrmas, D.J. Rapid Multi-Tracer PET Tumor Imaging with 18F-FDG and Secondary Shorter-Lived Tracers. IEEE Trans. Nucl. Sci. 2009, 56, 2750–2758. [Google Scholar] [CrossRef] [PubMed]
- Kadrmas, D.J.; Oktay, M.B. Generalized separable parameter space techniques for fitting 1K–5K serial compartment models. Med. Phys. 2013, 40, 072502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Morey, A.M.; Kadrmas, D.J. Application of separable parameter space techniques to multi-tracer PET compartment modeling. Phys. Med. Biol. 2016, 61, 1238. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Li, Z.; Liu, Z.; Navab, N.; Huang, S.C.; Keller, U.; Ziegler, S.I.; Shi, K. Direct parametric image reconstruction in reduced parameter space for rapid multi-tracer PET imaging. IEEE Trans. Med. Imaging 2015, 34, 1498–1512. [Google Scholar] [CrossRef]
- Gao, F.; Liu, H.; Jian, Y.; Shi, P. Dynamic dual-tracer PET reconstruction. In Proceedings of the Information Processing in Medical Imaging: 21st International Conference, IPMI 2009, Williamsburg, VA, USA, 5–10 July 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 38–49. [Google Scholar]
- Verhaeghe, J.; Reader, A.J. Accelerated PET water activation acquisition with signal separation methodology. Med. Phys. 2013, 40, 031909. [Google Scholar] [CrossRef]
- Verhaeghe, J.; Reader, A.J. Simultaneous water activation and glucose metabolic rate imaging with PET. Phys. Med. Biol. 2013, 58, 393. [Google Scholar] [CrossRef]
- Reader, A.J.; Matthews, J.C.; Sureau, F.C.; Comtat, C.; Trébossen, R.; Buvat, I. Fully 4D image reconstruction by estimation of an input function and spectral coefficients. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 5, pp. 3260–3267. [Google Scholar]
- El Fakhri, G.; Trott, C.M.; Sitek, A.; Bonab, A.; Alpert, N.M. Dual-tracer PET using generalized factor analysis of dynamic sequences. Mol. Imaging Biol. 2013, 15, 666–674. [Google Scholar] [CrossRef]
- Bell, C.; Puttick, S.; Rose, S.; Smith, J.; Thomas, P.; Dowson, N. Design and utilisation of protocols to characterise dynamic PET uptake of two tracers using basis pursuit. Phys. Med. Biol. 2017, 62, 4897. [Google Scholar] [CrossRef]
- Ding, W.; Yu, J.; Zheng, C.; Fu, P.; Huang, Q.; Feng, D.D.; Yang, Z.; Wahl, R.L.; Zhou, Y. Machine Learning-Based Noninvasive Quantification of Single-Imaging Session Dual-Tracer 18F-FDG and 68Ga-DOTATATE Dynamic PET-CT in Oncology. IEEE Trans. Med. Imaging 2021, 41, 347–359. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ruan, D.; Liu, H. Separation of a mixture of simultaneous dual-tracer PET signals: A data-driven approach. IEEE Trans. Nucl. Sci. 2017, 64, 2588–2597. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H. Deep-learning-based separation of a mixture of dual-tracer single-acquisition PET signals with equal half-Lives: A simulation study. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 649–659. [Google Scholar] [CrossRef]
- Qing, M.; Wan, Y.; Huang, W.; Xu, Y.; Liu, H. Separation of dual-tracer PET signals using a deep stacking network. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1013, 165681. [Google Scholar] [CrossRef]
- Luo, Y.; Mesgarani, N. Tasnet: Time-domain audio separation network for real-time, single-channel speech separation. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 696–700. [Google Scholar]
- Tong, J.; Chen, Y.; Liu, H. Single-scan dual-tracer separation network based on pre-trained GRU. In Proceedings of the International Workshop on Multiscale Multimodal Medical Imaging, Shenzhen, China, 13 October 2019; Springer: Cham, Switzerland; pp. 43–50. [Google Scholar]
- Tong, J.; Wang, C.; Liu, H. Temporal information-guided dynamic dual-tracer PET signal separation network. Med. Phys. 2022, 49, 4585–4598. [Google Scholar] [CrossRef] [PubMed]
- Lian, D.; Li, Y.; Liu, H. Spatiotemporal Attention Constrained Deep Learning Framework for Dual-Tracer PET Imaging. In Proceedings of the Medical Image Understanding and Analysis: 26th Annual Conference, MIUA 2022, Cambridge, UK, 27–29 July 2022; Springer International Publishing: Cham, Switzerland; pp. 87–100. [Google Scholar]
- Xu, J.; Liu, H. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging. Phys. Med. Biol. 2019, 64, 185016. [Google Scholar] [CrossRef]
- Zeng, F.; Liu, H. Dual-tracer PET image direct reconstruction and separation based on three-dimensional encoder–decoder network. In Proceedings of the Optics in Health Care and Biomedical Optics X, Online, 11–16 October 2020; Volume 11553, pp. 67–73. [Google Scholar]
- Zeng, F.; Fang, J.; Muhashi, A.; Liu, H. Direct reconstruction for simultaneous dual-tracer PET imaging based on multi-task learning. EJNMMI Res. 2023, 13, 7. [Google Scholar] [CrossRef]
- Wan, Y.; Ye, H.; Liu, H. Deep-learning based joint estimation of dual-tracer PET image activity maps and clustering of time activity curves. In Proceedings of the Medical Imaging 2021: Physics of Medical Imaging, Online, 15–20 February 2021; Volume 11595, pp. 981–989. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Anderson, D.H. Compartmental Modeling and Tracer Kinetics; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Morris, E.D.; Endres, C.J.; Schmidt, K.C.; Christian, B.T.; Muzic, R.F.; Fisher, R.E. Kinetic modeling in positron emission tomography. Emiss. Tomogr. 2004, 46, 499–540. [Google Scholar]
- Caruana, R. Multitask learning: A knowledge-based source of inductive bias. In Proceedings of the Tenth International Conference on Machine Learning, Amherst, MA, USA, 27–29 June 1993; pp. 41–48. [Google Scholar]
- Baxter, J.A. Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach. Learn. 1997, 28, 7–39. [Google Scholar] [CrossRef]
- Cocosco, C.A.; Kollokian, V.; Kwan, R.K.; Pike, G.B.; Evans, A.C. Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 1997, 5. [Google Scholar]
- Wang, B.; Liu, H. FBP-Net for direct reconstruction of dynamic PET images. Phys. Med. Biol. 2020, 65, 235008. [Google Scholar] [CrossRef]
- Gong, K.; Guan, J.; Kim, K.; Zhang, X.; Yang, J.; Seo, Y.; El Fakhri, G.; Qi, J.; Li, Q. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans. Med. Imaging 2018, 38, 675–685. [Google Scholar] [CrossRef]
- Feng, D.; Wong, K.P.; Wu, C.M.; Siu, W.C. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: Theory and simulation study. IEEE Trans. Inf. Technol. Biomed. 1997, 1, 243–254. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, Z.; Wen, J.; Xie, F.; Zhu, Y.; Zhang, Z.; Xiao, J.; Chen, Y.; Li, M.; Guan, Y.; et al. A nomogram modeling 11C-MET PET/CT and clinical features in glioma helps predict IDH mutation. Front. Oncol. 2020, 10, 1200. [Google Scholar] [CrossRef]
- Shepp, L.A.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1982, 1, 113–122. [Google Scholar] [CrossRef]
- Cheng, X.; Navab, N.; Ziegler, S.I.; Shi, K. Direct parametric image reconstruction of rapid multi-tracer PET. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 155–162. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Coleman, T.F.; Li, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996, 6, 418–445. [Google Scholar] [CrossRef]
- Li, Y.; Coleman, T.F. On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 1994, 67, 189–224. [Google Scholar]
ROIs | ||||||
---|---|---|---|---|---|---|
FDG | GM | 0.10 | 0.14 | 0.17 | 0.013 | 0.103 |
WM | 0.05 | 0.11 | 0.05 | 0.006 | 0.026 | |
Tumour | 0.11 | 0.10 | 0.15 | 0.015 | 0.173 | |
MET | GM | 0.08 | 0.08 | 0.10 | 0.017 | 0.103 |
WM | 0.04 | 0.06 | 0.04 | 0.028 | 0.026 | |
Tumour | 0.13 | 0.03 | 0.06 | 0.012 | 0.173 |
Tracers | Framing Scheme | # of Frames | Total Acquisition Time | |
---|---|---|---|---|
0 min | [F]FDG + [C]MET | 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 8 × 5 min | 19 | 50 min |
5 min | [F]FDG + [C]MET | 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 7 × 5 min | 27 | 50 min |
10 min | [F]FDG + [C]MET | 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 6 × 5 min | 28 | 50 min |
15 min | [F]FDG + [C]MET | 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 1 × 5 min, 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 5 × 5 min | 28 | 50 min |
2 days | [F]FDG | 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 8 × 5 min | 19 | 50 min |
[C]MET | 4 × 0.25 min, 2 × 0.5 min, 3 × 1 min, 1 × 2 min, 1 × 3 min, 4 × 5 min | 15 | 30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, B.; Marsden, P.K.; Reader, A.J. Dual-Tracer PET Image Separation by Deep Learning: A Simulation Study. Appl. Sci. 2023, 13, 4089. https://doi.org/10.3390/app13074089
Pan B, Marsden PK, Reader AJ. Dual-Tracer PET Image Separation by Deep Learning: A Simulation Study. Applied Sciences. 2023; 13(7):4089. https://doi.org/10.3390/app13074089
Chicago/Turabian StylePan, Bolin, Paul K. Marsden, and Andrew J. Reader. 2023. "Dual-Tracer PET Image Separation by Deep Learning: A Simulation Study" Applied Sciences 13, no. 7: 4089. https://doi.org/10.3390/app13074089
APA StylePan, B., Marsden, P. K., & Reader, A. J. (2023). Dual-Tracer PET Image Separation by Deep Learning: A Simulation Study. Applied Sciences, 13(7), 4089. https://doi.org/10.3390/app13074089