Applied Radiation Chemistry: Theory, Methods and Applications
Introduction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chatterjee, A. Interaction of ionizing radiation with matter. In Radiation Chemistry: Principles and Applications, 2nd ed.; Farhat, A., Rodgers, M.A.J., Eds.; VCH Publishers Inc.: New York, NY, USA, 1987; pp. 1–27. [Google Scholar]
- Leay, L.; Baidak, A.; Anderson, C.; Chan, C.M.; Daubney, A.; Donoclift, T.; Draper, G.; Edge, R.; Hobbs, J.; Jones, L.; et al. Resurgence of a Nation’s Radiation Science Driven by Its Nuclear Industry Needs. Appl. Sci. 2021, 11, 11081. [Google Scholar] [CrossRef]
- Gasiorowski, A.; Szajerski, P.; Cuevas, J.F.B. Use of Terbium Doped Phosphate Glasses for High Dose Radiation Dosimetry—Thermoluminescence Characteristics, Dose Response and Optimization of Readout Method. Appl. Sci. 2021, 11, 7221. [Google Scholar] [CrossRef]
- Pastina, B.; LaVerne, J.A. An Alternative Conceptual Model for the Spent Nuclear Fuel–Water Interaction in Deep Geologic Disposal Conditions. Appl. Sci. 2021, 11, 8566. [Google Scholar] [CrossRef]
- Swiatla-Wojcik, D. A Numerical Simulation of Radiation Chemistry for Controlling the Oxidising Environment in Water-Cooled Nuclear Power Reactors. Appl. Sci. 2022, 12, 947. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A. Application of Radiation Technology in Removing Endocrine Micropollutants from Waters and Wastewaters—A Review. Appl. Sci. 2021, 11, 12032. [Google Scholar] [CrossRef]
- Gryczka, U.; Zimek, Z.; Walo, M.; Chmielewska-Śmietanko, D.; Bułka, S. Advanced Electron Beam (EB) Wastewater Treatment System with Low Background X-ray Intensity Generation. Appl. Sci. 2021, 11, 11194. [Google Scholar] [CrossRef]
- Güven, O. Radiation-Assisted Synthesis of Polymer-Based Nanomaterials. Appl. Sci. 2021, 11, 7913. [Google Scholar] [CrossRef]
- Matusiak, M.; Kadłubowski, S.; Ulański, P. Recombination of Poly(Acrylic Acid) Radicals in Acidic Aqueous Solutions: A Pulse Radiolysis Study. Appl. Sci. 2021, 11, 10142. [Google Scholar] [CrossRef]
- Yu, C.; Peng, J.; Li, J.; Zhai, M. pH-Responsive Hollow Polymeric Microspheres from Irradiated Cyclic Ether Aqueous Solution. Appl. Sci. 2021, 11, 8652. [Google Scholar] [CrossRef]
- Ranoux, G.; Tataru, G.; Coqueret, X. Cationic Curing of Epoxy–Aromatic Matrices for Advanced Composites: The Assets of Radiation Processing. Appl. Sci. 2022, 12, 2355. [Google Scholar] [CrossRef]
- Du, J.; Xiong, H.; Dong, Z.; Yang, X.; Zhao, L.; Yang, J. Ethylenediamine and Pentaethylene Hexamine Modified Bamboo Sawdust by Radiation Grafting and Their Adsorption Behavior for Phosphate. Appl. Sci. 2021, 11, 7854. [Google Scholar] [CrossRef]
- Grosvenor, E.C.; Hughes, J.C.; Stanfield, C.W.; Blanchard, R.L.; Fox, A.C.; Mihok, O.L.; Lee, K.; Brodsky, J.R.; Hoy, A.; Uniyal, A.; et al. On the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic acid) for Applications in Biodegradable Food Packaging. Appl. Sci. 2022, 12, 1819. [Google Scholar] [CrossRef]
- Hiroki, A.; Taguchi, M. Development of Environmentally Friendly Cellulose Derivative-Based Hydrogels for Contact Lenses Using a Radiation Crosslinking Technique. Appl. Sci. 2021, 11, 9168. [Google Scholar] [CrossRef]
- Wach, R.A.; Palmeri, G.; Adamus-Wlodarczyk, A.; Rokita, B.; Olejnik, A.K.; Clelia Dispenza, C.; Ulanski, P. Dual Stimuli-Responsive Polysaccharide Hydrogels Manufactured by Radiation Technique. Appl. Sci. 2022, 12, 11764. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swiatla-Wojcik, D.; Katsumura, Y.; Wach, R.A. Applied Radiation Chemistry: Theory, Methods and Applications. Appl. Sci. 2023, 13, 3781. https://doi.org/10.3390/app13063781
Swiatla-Wojcik D, Katsumura Y, Wach RA. Applied Radiation Chemistry: Theory, Methods and Applications. Applied Sciences. 2023; 13(6):3781. https://doi.org/10.3390/app13063781
Chicago/Turabian StyleSwiatla-Wojcik, Dorota, Yosuke Katsumura, and Radoslaw A. Wach. 2023. "Applied Radiation Chemistry: Theory, Methods and Applications" Applied Sciences 13, no. 6: 3781. https://doi.org/10.3390/app13063781
APA StyleSwiatla-Wojcik, D., Katsumura, Y., & Wach, R. A. (2023). Applied Radiation Chemistry: Theory, Methods and Applications. Applied Sciences, 13(6), 3781. https://doi.org/10.3390/app13063781