Evaluation of the Effectiveness of Overheated Dry-Saturated Steam Disinfection in the Control of the Dental Chair Contamination by Bioluminescence Analysis: A Pilot In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics Approval
2.2. Study Objectives
2.3. Dental Chair’ Surfaces
2.4. Sample Size Calculation
2.5. Operative Protocol
2.5.1. Samples Collection
2.5.2. Overheated Dry-Saturated Steam Disinfection System
2.5.3. Adenosine Triphosphate (ATP) Bioluminescence Analyses
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.A.; Davis, J.S.; Looke, D.F. Death from an untreatable infection may signal the start of the post-antibiotic era. Med. J. Aust. 2017, 206, 292–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, M.F.U.; Akhter, S.; Batool, A.I.; Selamoglu, Z.; Sevindik, M.; Eman, R.; Mustaqeem, M.; Akram, M.S.; Kanwal, F.; Lu, C.; et al. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics 2021, 10, 1011. [Google Scholar] [CrossRef] [PubMed]
- Fast, S.M.; González, M.C.; Markuzon, N. Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction. PLoS ONE 2015, 10, e0136059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Volgenant, C.M.C.; de Soet, J.J. Cross-transmission in the Dental Office: Does This Make You Ill? Curr. Oral Health Rep. 2018, 5, 221–228. [Google Scholar] [CrossRef] [Green Version]
- To, K.K.-W.; Tsang, O.T.-Y.; Yip, C.C.-Y.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.-C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Gamio, L. The Workers Who Face the Greatest Coronavirus Risk. N. Y. Times 2020, 15, 15. [Google Scholar]
- Innes, N.; Johnson, I.; Al-Yaseen, W.; Harris, R.; Jones, R.; Kc, S.; McGregor, S.; Robertson, M.; Wade, W.; Gallagher, J. A systematic review of droplet and aerosol generation in dentistry. J. Dent. 2020, 105, 103556. [Google Scholar] [CrossRef]
- Boone, S.A.; Gerba, C.P. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease. Appl. Environ. Microbiol. 2007, 73, 1687–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzetti, R.; Nisi, M.; Gabriele, M.; Graziani, F. COVID-19 Transmission in Dental Practice: Brief Review of Preventive Measures in Italy. J. Dent. Res. 2020, 99, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Caggiano, M.; Amato, M.; Moccia, G.; Capunzo, M.; De Caro, F. Infection Control in Dental Practice During the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 4769. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases. Guidance for Dental Settings: Interim Infection Prevention and Control Guidance for Dental Settings during the COVID-19 Response. 19 May 2020. Available online: https://stacks.cdc.gov/view/cdc/88256 (accessed on 27 February 2023).
- Barabari, P.; Moharamzadeh, K. Novel Coronavirus (COVID-19) and Dentistry–A Comprehensive Review of Literature. Dent. J. 2020, 8, 53. [Google Scholar] [CrossRef]
- Villani, F.A.; Aiuto, R.; Paglia, L.; Re, D. COVID-19 and Dentistry: Prevention in Dental Practice, a Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 4609. [Google Scholar] [CrossRef]
- Cumbo, E.; Gallina, G.; Messina, P.; Scardina, G.A. Alternative Methods of Sterilization in Dental Practices Against COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5736. [Google Scholar] [CrossRef]
- Song, L.; Wu, J.; Xi, C. Biofilms on environmental surfaces: Evaluation of the disinfection efficacy of a novel steam vapor system. Am. J. Infect. Control. 2012, 40, 926–930. [Google Scholar] [CrossRef]
- Marchesi, I.; Sala, A.; Frezza, G.; Paduano, S.; Turchi, S.; Bargellini, A.; Borella, P.; Cermelli, C. In vitro virucidal efficacy of a dry steam disinfection system against Human Coronavirus, Human Influenza Virus, and Echovirus. J. Occup. Environ. Hyg. 2021, 18, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Tanner, B.D. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system. Am. J. Infect. Control. 2009, 37, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.D.; Tanner, B.D.; Maxwell, S.L.; Gerba, C.P. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system. Am. J. Infect. Control. 2011, 39, 655–662. [Google Scholar] [CrossRef]
- Bagattini, M.; Buonocore, R.; Giannouli, M.; Mattiacci, D.; Bellopede, R.; Grimaldi, N.; Nardone, A.; Zarrilli, R.; Triassi, M. Effect of treatment with an overheated dry-saturated steam vapour disinfection system on multidrug and extensively drug-resistant nosocomial pathogens and comparison with sodium hypochlorite activity. BMC Res. Notes 2015, 8, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, D.; Dharmasena, M.; Fraser, A.; Pettigrew, C.; Anderson, J.; Jiang, X. Efficacy of Silver Dihydrogen Citrate and Steam Vapor against a Human Norovirus Surrogate, Feline Calicivirus, in Suspension, on Glass, and on Carpet. Appl. Environ. Microbiol. 2018, 84, e00233-18. [Google Scholar] [CrossRef] [Green Version]
- Oztoprak, N.; Kizilates, F.; Percin, D. Comparison of steam technology and a two-step cleaning (water/detergent) and disinfecting (1,000 resp. 5,000 ppm hypochlorite) method using microfiber cloth for environmental control of multidrug-resistant organisms in an intensive care unit. GMS Hyg. Infect. Control 2019, 14, Doc15. [Google Scholar]
- Gerchman, Y.; Mamane, H.; Friedman, N.; Mandelboim, M. UV-LED disinfection of Coronavirus: Wavelength effect. J. Photochem. Photobiol. B Biol. 2020, 212, 112044. [Google Scholar] [CrossRef]
- World Health Organization. Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19: Interim Guidance; 15 May 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Su-Velez, B.M.; Maxim, T.; Long, J.L.; John, M.A.S.; Holliday, M.A. Decontamination Methods for Reuse of Filtering Facepiece Respirators. JAMA Otolaryngol. Neck Surg. 2020, 146, 734. [Google Scholar] [CrossRef] [PubMed]
- Seresirikachorn, K.; Phoophiboon, V.; Chobarporn, T.; Tiankanon, K.; Aeumjaturapat, S.; Chusakul, S.; Snidvongs, K. Decontamination and reuse of surgical masks and N95 filtering facepiece respirators during the COVID-19 pandemic: A systematic review. Infect. Control. Hosp. Epidemiol. 2021, 42, 25–30. [Google Scholar] [CrossRef]
- DeMatteo, R.; Warden, D.; Marshall, J.; Goodyear, N. Fabric softeners impact cleaning, but not disinfection, by a saturated steam vapor system. Am. J. Infect. Control. 2014, 42, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Amodio, E.; Dino, C. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: A review of the published literature (1990–2012). J. Infect. Public Health 2014, 7, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanna, T.; Dallolio, L.; Raggi, A.; Mazzetti, M.; Lorusso, G.; Zanni, A.; Farruggia, P.; Leoni, E. ATP bioluminescence assay for evaluating cleaning practices in operating theatres: Applicability and limitations. BMC Infect. Dis. 2018, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- M Clean-Trace Luminometer LX25 User Manual. 2017. Available online: https://multimedia.3m.com/mws/media/1421446O/cleantracelx25usermanual.pdf (accessed on 27 February 2023).
- Polti Sani System Instruction Manual. 2021. Available online: https://www.polti.com/wp/wp-content/uploads/2021/04/MANUALE-SANI-SYSTEM-PRO-M0S12066-W1OU-2U07.pdf (accessed on 27 February 2023).
Time | N | Min | 25th Percentile | Median | 75th Percentile | Max | Wilcoxon Signed-Rank p-Value |
---|---|---|---|---|---|---|---|
T0 | 60 | 15 | 96 | 255 | 751.5 | 32,097 | |
T1 | 60 | 4 | 15 | 28 | 63 | 645 | |
Paired difference * | 60 | −32,015 | −670 | −208 | −60.5 | 32.5 | <0.0001 |
T1 | McNemar p-Value | ||
T0 | “Not Approved” (n = 4) | “Approved” (n = 56) | |
“Not approved” (n = 40) | 4 (100.0) | 36 (64.3) | <0.0001 |
“Approved” (n = 20) | 0 (0.0) | 20 (35.7) |
Surface | Time | N | Min | 25th Percentile | Median | 75th Percentile | Max | Wilcoxon Signed-Rank p-Value |
---|---|---|---|---|---|---|---|---|
Scialytic lamp | T0 | 20 | 15 | 70 | 175 | 441.5 | 4846 | |
T1 | 20 | 4 | 9 | 20 | 28 | 645 | ||
Paired difference * | 20 | −4201 | −428 | −157 | −43.5 | 1 | <0.0001 | |
Control panel | T0 | 20 | 42.5 | 126.5 | 201.5 | 596 | 32,097 | |
T1 | 20 | 7 | 17 | 26.5 | 69 | 94.5 | ||
Paired difference * | 20 | −32,015 | −580 | −180 | −68 | 32.5 | <0.0001 | |
Spit bowl | T0 | 20 | 36 | 175 | 417.5 | 1070 | 3739 | |
T1 | 20 | 7 | 23 | 48 | 90.5 | 410 | ||
Paired difference * | 20 | −3663 | −891.5 | −368.5 | −93 | 13 | <0.0001 |
Surface | T1 | McNemar p-value | ||
Scialytic lamp | T0 | “Not approved” (n = 1) | “Approved” (n = 19) | |
“Not approved” (n = 11) | 1 (100.0) | 10 (52.6) | 0.002 | |
“Approved” (n = 9) | 0 (0.0) | 9 (47.4) | ||
T1 | McNemar p-value | |||
Control panel | T0 | “Not approved” (n = 3) | “Approved” (n = 17) | |
“Not approved” (n = 15) | 3 (100.0) | 12 (70.6) | 0.001 | |
“Approved” (n = 5) | 0 (0.0) | 5 (29.4) | ||
T1 | McNemar p-value | |||
Spit bowl | T0 | “Not approved” (n = 0) | “Approved” (n = 20) | |
“Not approved” (n = 14) | 0 (0.0) | 14 (70.0) | 0.001 | |
“Approved” (n = 6) | 0 (0.0) | 6 (30.0) |
Time | Surface | N | Min | 25th Percentile | Median | 75th Percentile | Max | Kruskall Wallis p-Value |
---|---|---|---|---|---|---|---|---|
T0 | Scialytic lamp | 20 | 15 | 70 | 175 | 441.5 | 4846 | 0.15 |
Control panel | 20 | 42.5 | 126.5 | 201.5 | 596 | 32,097 | ||
Spit bowl | 20 | 36 | 175 | 417.5 | 1070 | 3739 | ||
T1 | Scialytic lamp | 20 | 4 | 9 | 20 | 28 | 645 | 0.6 |
Control panel | 20 | 7 | 17 | 26.5 | 69 | 94.5 | ||
Spit bowl | 20 | 7 | 23 | 48 | 90.5 | 410 |
Surface | T0 | Chi-square p-value | |
“Not approved” (n = 40) | “Approved” (n = 20) | ||
Scialytic lamp | 11 (27.5) | 9 (45.0) | 0.38 |
Control panel | 14 (35.0) | 6 (30.0) | |
Spit bowl | 15 (37.5) | 5 (25.0) | |
Surface | T1 | Chi-square p-value | |
“Not approved” (n = 4) | “Approved” (n = 56) | ||
Scialytic lamp | 1 (25.0) | 19 (33.9) | 0.31 |
Control panel | 0 (0.0) | 20 (35.7) | |
Spit bowl | 3 (75.0) | 17 (30.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luppieri, V.; Giangreco, M.; Chermetz, M.; Ronfani, L.; Cadenaro, M. Evaluation of the Effectiveness of Overheated Dry-Saturated Steam Disinfection in the Control of the Dental Chair Contamination by Bioluminescence Analysis: A Pilot In Vitro Study. Appl. Sci. 2023, 13, 3685. https://doi.org/10.3390/app13063685
Luppieri V, Giangreco M, Chermetz M, Ronfani L, Cadenaro M. Evaluation of the Effectiveness of Overheated Dry-Saturated Steam Disinfection in the Control of the Dental Chair Contamination by Bioluminescence Analysis: A Pilot In Vitro Study. Applied Sciences. 2023; 13(6):3685. https://doi.org/10.3390/app13063685
Chicago/Turabian StyleLuppieri, Valentina, Manuela Giangreco, Maddalena Chermetz, Luca Ronfani, and Milena Cadenaro. 2023. "Evaluation of the Effectiveness of Overheated Dry-Saturated Steam Disinfection in the Control of the Dental Chair Contamination by Bioluminescence Analysis: A Pilot In Vitro Study" Applied Sciences 13, no. 6: 3685. https://doi.org/10.3390/app13063685
APA StyleLuppieri, V., Giangreco, M., Chermetz, M., Ronfani, L., & Cadenaro, M. (2023). Evaluation of the Effectiveness of Overheated Dry-Saturated Steam Disinfection in the Control of the Dental Chair Contamination by Bioluminescence Analysis: A Pilot In Vitro Study. Applied Sciences, 13(6), 3685. https://doi.org/10.3390/app13063685