A Trajectory Generation Method for Multi-Rotor UAV Based on Adaptive Adjustment Strategy
Abstract
:1. Introduction
2. Background
2.1. Differential Flatness Principle and UAV Trajectory Representation
2.2. Trajectory Generation Problem Definition
3. Method
3.1. B-Spline Curve and Security Guarantee Method
3.1.1. B-Spline-Based Trajectory Representation
3.1.2. Convex Hull Property of B-Splines and Guarantee of Dynamic Feasibility
3.1.3. B-Spline Error Upper-Bound Property and Security Guarantee
3.2. Definition of Optimization Function and Adaptive Adjustment Method
3.2.1. Optimization Function Definition
3.2.2. Trajectory Optimization Method Based on Adaptive Adjustment
3.2.3. Time Reallocate Method
4. Experiment and Result
4.1. Simulation
4.1.1. Simulation Environment Settings
4.1.2. Trajectory Generation Comparison
4.2. Real-World Tasks
4.2.1. Flight Platform and Software Environment
4.2.2. Experimental Environment and Related Settings
4.2.3. Real-World Task Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef] [Green Version]
- Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar]
- Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In Robotics Research; Springer: Cham, Switzerland, 2016; pp. 649–666. [Google Scholar]
- Gao, F.; Wu, W.; Lin, Y.; Shen, S. Online Safe Trajectory Generation for Quadrotors Using Fast Marching Method and Bernstein Basis Polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 344–351. [Google Scholar]
- Deits, R.; Tedrake, R. Efficient mixed-integer planning for UAVs in cluttered environments. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 42–49. [Google Scholar]
- Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [Google Scholar] [CrossRef]
- Campos-Macías, L.; Gómez-Gutiérrez, D.; Aldana-López, R.; de la Guardia, R.; Parra-Vilchis, J.I. A hybrid method for online trajectory planning of mobile robots in cluttered environments. IEEE Robot. Autom. Lett. 2017, 2, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Su, K.; Shen, S. Real-time safe trajectory generation for quadrotor flight in cluttered environments. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1678–1685. [Google Scholar]
- Ren, Y.; Zhu, F.; Liu, W.; Wang, Z.; Lin, Y.; Gao, F.; Zhang, F. Bubble planner: Planning high-speed smooth quadrotor trajectories using receding corridors. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 6332–6339. [Google Scholar]
- Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP: Covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [Google Scholar] [CrossRef] [Green Version]
- Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4569–4574. [Google Scholar]
- Oleynikova, H.; Burri, M.; Taylor, Z.; Nieto, J.; Siegwart, R.; Galceran, E. Continuous-time trajectory optimization for online UAV replanning. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 5332–5339. [Google Scholar]
- Usenko, V.; Von Stumberg, L.; Pangercic, A.; Cremers, D. Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 215–222. [Google Scholar]
- Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett. 2019, 4, 3529–3536. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Pan, J.; Gao, F.; Shen, S. Raptor: Robust and perception-aware trajectory replanning for quadrotor fast flight. IEEE Trans. Robot. 2021, 37, 1992–2009. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. Ego-planner: An esdf-free gradient-based local planner for quadrotors. IEEE Robot. Autom. Lett. 2020, 6, 478–485. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Xu, C.; Gao, F. Geometrically constrained trajectory optimization for multicopters. IEEE Trans. Robot. 2022, 38, 3259–3278. [Google Scholar] [CrossRef]
- Nairn, D.; Peters, J.; Lutterkort, D. Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon. Comput. Aided Geom. Des. 1999, 16, 613–631. [Google Scholar] [CrossRef]
- Reif, U. Best bounds on the approximation of polynomials and splines by their control structure. Comput. Aided Geom. Des. 2000, 17, 579. [Google Scholar] [CrossRef]
Obstacle | X-Axis Range (m) | Y-Axis Range (m) | Z-Axis Range (m) |
---|---|---|---|
Wall 1 | [2.0, 3.0] | [−2.5, 0.5] | [0.0, 2.5] |
Wall 2 | [4.0, 5.0] | [0.0, 2.5] | [0.0, 2.5] |
Wall 3 | [6.5, 8.0] | [−2.5, 0.5] | [0.0, 2.5] |
Obstacle | X-Axis Range (m) | Y-Axis Range (m) | Z-Axis Range (m) |
---|---|---|---|
Column 1 | [1.75, 3.25] | [−2.25, −0.75] | [0.0, 2.5] |
Column 2 | [1.25, 2.75] | [0.25, 1.75] | [0.0, 2.5] |
Column 3 | [4.25, 5.75] | [−0.75, 0.75] | [0.0, 2.5] |
Column 4 | [6.75, 8.25] | [−2.75, −1.25] | [0.0, 2.5] |
Column 5 | [6.75, 8.25] | [0.75, 2.25] | [0.0, 2.5] |
Method | Planning Time (s) | Trajectory Running Time (s) | Trajectory Length (m) | Trajectory Smoothness (m/s2) |
---|---|---|---|---|
Fast-Planner | 0.063 | 9.06 | 13.78 | 2.13 |
Proposed | 0.073 | 7.59 | 11.54 | 1.96 |
Method | Planning Time (s) | Trajectory Running Time (s) | Trajectory Length (m) | Trajectory Smoothness (m/s2) |
---|---|---|---|---|
Fast-Planner | 0.067 | 6.81 | 10.46 | 1.87 |
Proposed | 0.070 | 5.68 | 9.46 | 1.45 |
Obstacle | Position (m) | Size (m) |
---|---|---|
Obstacle 1 | [2.0, 1.5] | [0.7, 0.7, 2.1] |
Obstacle 2 | [4.0, 0.5] | [0.7, 0.7, 2.1] |
Obstacle 3 | [6.0, 1.0] | [0.7, 0.7, 2.1] |
Obstacle | Position (m) | Size (m) |
---|---|---|
Obstacle 1 | [2.0, 1.0] | [0.7, 0.7, 2.1] |
Obstacle 2 | [5.5, 1.0] | [0.7, 0.7, 2.1] |
Obstacle 3 | [11.0, 0.0] | [0.7, 0.7, 2.1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Meng, Z.; Wang, Z.; Wu, Z. A Trajectory Generation Method for Multi-Rotor UAV Based on Adaptive Adjustment Strategy. Appl. Sci. 2023, 13, 3435. https://doi.org/10.3390/app13063435
Wang K, Meng Z, Wang Z, Wu Z. A Trajectory Generation Method for Multi-Rotor UAV Based on Adaptive Adjustment Strategy. Applied Sciences. 2023; 13(6):3435. https://doi.org/10.3390/app13063435
Chicago/Turabian StyleWang, Kaipeng, Zhijun Meng, Zichen Wang, and Zhenping Wu. 2023. "A Trajectory Generation Method for Multi-Rotor UAV Based on Adaptive Adjustment Strategy" Applied Sciences 13, no. 6: 3435. https://doi.org/10.3390/app13063435
APA StyleWang, K., Meng, Z., Wang, Z., & Wu, Z. (2023). A Trajectory Generation Method for Multi-Rotor UAV Based on Adaptive Adjustment Strategy. Applied Sciences, 13(6), 3435. https://doi.org/10.3390/app13063435