Safe Functional Modified CuO Nanoparticles?
Abstract
:1. Introduction
2. Safe(r)-By-Design CuO Nanoparticles
2.1. Surface Modification by Coating or Capping
2.2. Doping
2.3. Are the Modified CuO Nanoparticles Discussed in This Section Safe?
3. Safe(r)-By-Design and Functionality
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Maynard, A.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdörster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V.; et al. Safe handling of nanotechnology. Nature 2006, 444, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Kaczerewska, O.B. Green nanotechnology: The latest innovations, knowledge and future perspectives. Appl. Sci. 2021, 11, 4513. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, F.; Wang, J.; Zu, Y.; Gu, Z.; Zhao, Y. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv. Mater. 2019, 31, 1805391. [Google Scholar] [CrossRef]
- Damasco, J.A.; Ravi, S.; Perez, J.D.; Hagaman, D.E.; Melancon, M.P. Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomaterials 2020, 10, 2186. [Google Scholar] [CrossRef]
- Reijnders, L. Safer by design for nanomaterials. In Nanotoxicity. Prevention and Antibacterial Applications of Nanomaterials; Rajendran, S., Mukherjee, A., Nguyen, T.A., Godugu, C., Shukla, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 215–240. [Google Scholar]
- Nations, S.; Long, M.; Wages, M.; Maul, J.D.; Theodorakis, C.W.; Cobb, G.P. Subchronic and chronic developmental effects of copper oxide nanoparticles on Xenopus laevis. Chemosphere 2015, 135, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Adeleye, A.S.; Page, H.M.; Kui, L.; Lenihan, H.S.; Keller, A.A. Nano and traditional copper and zinc antifouling coatings: Metal release and impact on marine sessile invertebrate communities. J. Nanopart. Res. 2020, 22, 19. [Google Scholar] [CrossRef]
- Donelly, B.; Samut, K.; Tang, Y. Materials selection for antifouling systems on marine structures. Molecules 2022, 27, 3408. [Google Scholar] [CrossRef]
- Kora, A.J. Copper-based nanopesticides. In Copper Nanostructures: Next Generation of Agrochemicals for Sustainable Agroecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 133–153. [Google Scholar]
- Wang, C.; Qi, C. Revealing the chemical and structural properties of copper-based nanoparticles released from copper-treated wood. RSC Adv. 2022, 12, 11391–11401. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.J.; Goswami, A.; Felpin, F.; Asefa, F.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles in synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Domen, K. Particulate photocatalysts for light driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Moreira, A.J.; Santos, L.C.; Sciena, C.R.; Zenatti, A.; Escote, M.T.; Mastelaro, V.R.; Joya, M.R. CuO nanoparticles decorated on hydoxyapatite/ferrite magnetic support: Photocatalytic activity, cytotoxicity, and antimicrobial response. Environ. Sci. Pollut. Res. 2022, 29, 41505–41519. [Google Scholar] [CrossRef] [PubMed]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensors and biosensors. Microchim. Acta 2019, 185, 358. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Kumar, N. Synthesis and biomedical application of copper oxide nanoparticles: An expanding horizon. ACS Appl. Biomater. Sci. Eng. 2019, 5, 1170–1188. [Google Scholar] [CrossRef]
- Steinhauer, S. Gas sensors based on copper oxide nanomaterials: A review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Kabeel, A.I.; Elaloui, I.; Abdelgaied, M.; Abdullah, A. Experimental study of improving the yield of hemispherical distillers using CuO nanoparticles and cooling the glass cover. Solar Energy Mater. Solar Cells 2022, 235, 111482. [Google Scholar] [CrossRef]
- Mustafa, J.; Alqaed, S.; Kalbasi, S. Challenging of using CuO nanoparticles in flat plate solar collector–energy saving in a solar-assisted hot process stream. J. Taiwan Inst. Chem. Eng. 2021, 124, 256–265. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.J.; Jin, Z.G.; Yang, X.H. Performance investigation of the organosilicone conductor oil with CuO nanoparticles filled in twist tube flow for solar energy storage. J. Energy Storage 2021, 41, 102911. [Google Scholar] [CrossRef]
- Bitire, S.P.; Mwanne, E.C.; Jen, T. The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review. Energy Environ. 2022. [Google Scholar] [CrossRef]
- Cuong, H.N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Hai, N.T.T.; Viet, N.M.; Nguyen, V. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 2022, 203, 111858. [Google Scholar] [CrossRef]
- Ivask, A.; Juganson, K.; Bondarenko, O.; Mortimer, M.; Aruoja, V.; Kasemets, K.; Blinova, I.; Heinlaan, M.; Slaveykova, V.; Kahru, A. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles in selected ecotoxicological test organisms and mammalian cells in vitro. A comparative review. Nanotoxicology 2014, 8 (Suppl. S1), 57–71. [Google Scholar] [CrossRef]
- Perreault, F.; Popovic, R.; Dewez, D. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ. Pollut. 2014, 185, 219–227. [Google Scholar] [CrossRef]
- Ivask, A.; Titma, T.; Visnapuu, M.; Vija, H.; Käkinen, A.; Sihtmäe, M.; Pokhrel, S.; Mädler, S.L.; Heinlaan, M.; Kisand, V.; et al. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr. Top. Med. Chem. 2015, 15, 1914–1929. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, H.; Zhang, Y.; Xin, H. The effect of Cu NP on reactive oxygen species and cell cycle gene expression in rice. Environ. Toxicol. Chem. 2015, 34, 554–561. [Google Scholar] [CrossRef]
- Gonsalves, M.F.M.; Gomes, S.I.L.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Shorter lifetime of a soil invertebrate exposed to copper oxide nanoparticles in a full lifespan exposure test. Sci. Rep. 2017, 7, 1355. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, A.; Zivcak, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plants: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizwan, M.; Ali, S.; Quayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-u-Rehman, M.; Fahrid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Denluck, L.; Wu, F.; Crandon, L.E.; Harper, B.J.; Harper, S.L. Reactive oxygen species generation is a likely driver of copper-based nanomaterial toxicity. Environ. Sci. Nano 2018, 5, 1473–1481. [Google Scholar] [CrossRef]
- Lin, S.; Yu, T.; Hu, X.; Yin, D. Nanomaterials safer-by-design: An environmental safety perspective. Adv. Mater. 2018, 30, 1705691. [Google Scholar] [CrossRef]
- Paruthi, A.; Brown, J.M.; Panda, E.; Gautam, A.R.S.; Singh, S.; Misra, S.K. Transformation in band energetics of CuO nanoparticles as a function of solubility and its impact on cellular response. NanoImpact 2021, 22, 100324. [Google Scholar] [CrossRef]
- Das, D.; Nath, B.C.; Phukon, P.; Dolui, S.K. Synthesis and evaluation of anti-oxidant and antibacterial behaviour of CuO nanoparticles. Colloids Surf. Biointerf. 2013, 101, 430–433. [Google Scholar] [CrossRef]
- Ge, X.; Cao, X.; Chu, L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants 2022, 11, 791. [Google Scholar] [CrossRef]
- Podder, S.; Gosh, C.K.; Das, A.; Hardy, J.G. Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. Emerg. Mater. 2022, 5, 455–475. [Google Scholar] [CrossRef]
- Jiang, X.; Gray, P.; Patel, M.; Zheng, J.; Yin, J. Cross-over between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. J. Mater. Chem. B 2020, 8, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Andleeb, A.; Ashraf, H.; Meer, B.; Mahmood, A.; Jam, H.; Zaman, G.; Nadeem, M.; Drouet, S.; Fazal, H.; et al. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibiting activities of Silybam marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv. 2022, 12, 14069–14083. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.H.; Ashraf, M.; Sabir, I.A.; Manzoor, M.A.; Malik, M.S.; Gulzar, S.; Ashraf, F.; Iqbal, J.; Niu, Q.; Zhang, Y. Green synthesis and characterization of copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J. Mol. Struct. 2022, 1259, 132696. [Google Scholar] [CrossRef]
- Reijnders, L. Hazard reduction for the application of titania nanoparticles in environmental technology. J. Hazard. Mater. 2008, 152, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Naatz, H.; Lin, S.; Li, R.; Jiang, W.; Ji, Z.; Chang, C.H.; Köser, J.; Thörning, J.; Xia, T.; Nel, A.E.; et al. Safe-by-design CuO nanoparticles via Fe-doping Cu-O bond length variation and biological assessment in cells and zebrafish embryos. ACS Nano 2017, 11, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Chang, Y.; Xu, K.; Zheng, R.; Wu, X.; Chen, Y.; Zhang, H. Safety-by-design of metal oxide nanoparticles based on the regulation of their energy edges. Small 2020, 16, 1907643. [Google Scholar] [CrossRef]
- Líbalová, H.; Costa, P.M.; Olsson, M.; Farcal, L.; Ortelli, K.L.; Ortelli, S.; Blosi, M.; Topinka, J.; Costa, A.L.; Fadeel, B. Toxicity of surface modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface modification and particle dissolution. Chemosphere 2018, 196, 482–493. [Google Scholar] [CrossRef]
- Ribeiro, M.J.; Amorim, M.J.B.; Scott-Fordsmand, J.J. Cell in vitro testing with soil invertebrates -challenges and opportunities towards modelling the effect of nanomaterials: A surface-modified CuO case study. Nanomaterials 2019, 9, 1087. [Google Scholar] [CrossRef] [Green Version]
- Tatsi, K.; Shaw, B.J.; Hutchinson, T.H.; Hardy, R.D. Copper concentration and toxicity in earthworms exposed to effects of particle coating and soil aging. Ecotoxicol. Environ. Safet. 2018, 16, 462–473. [Google Scholar] [CrossRef]
- Mendes, L.A.; Amorim, M.J.B.; Scott- Fordsmand, J.J. Assessing safer-by-design CuO surface modifications using terrestrial multispecies assays. Sci. Total Environ. 2019, 678, 457–465. [Google Scholar] [CrossRef]
- Fiandra, L.; Bonfanti, B.; Piunno, Y.; Nagvenkar, A.P.; Perlesthein, I.; Gedanken, A.; Saibene, M.; Colombo, A.; Mantecca, P. Hazard assessment of polymer-capped CuO and ZnO nanocolloids. A contribution to safe-by-design implementation of biocidal agents. NanoImpact 2020, 17, 100195. [Google Scholar] [CrossRef]
- Gosens, I.; Costa, P.M.; Olsson, M.; Stone, V.; Costa, A.L.; Brunelli, A.; Badetti, E.; Bonetto, A.; Bokkers, A.G.H.; de Jong, W.H.; et al. Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface modified copper oxide nanoparticles. NanoImpact 2021, 22, 100373. [Google Scholar] [CrossRef]
- Cai, X.; Lee, A.; Ji, Z.; Huang, C.; Chang, C.H.; Wang, X.; Liao, Y.-P.; Xia, T.; Li, R. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Partic. Fibre Toxicol. 2017, 14, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conolly, M.; Little, S.; Hartl, M.G.J.; Fernandez, T.T. An integrated testing strategy for ecotoxicity (ITS-ECO) assessment in the marine environment using Mytilus spp.: A case study using pristine and coated CuO and TiO2 nanomaterials. Environ. Toxicol. Chem. 2022, 41, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Perkins, E.J.; Ankley, G.K.T.; Crofton, K.M.; Garcia-Reyero, N.; Lalone, C.A.; Johnson, M.S.; Tietge, J.E.; Villeneuve, D.L. Current perspectives on the use of alternative species in human health and ecological hazard assessment. Environ. Health Perspect. 2013, 121, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, M.; Simkó, M. The changing face of nanomaterials: Risk assessment challenges along the value chain. Regulat. Toxicol. Pharmacol. 2017, 84, 105–115. [Google Scholar] [CrossRef]
- Erlichman, J.S.; Leiter, J.C. Complexity of the nano-bio interface and the tortuous path of metal oxides in biological systems. Antioxidants 2021, 10, 547. [Google Scholar] [CrossRef]
- Lewis, R.W.; Bertsch, P.M.; McNear, D.H. Nanotoxicology of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria: A critical review. Nanotoxicology 2019, 13, 392–428. [Google Scholar] [CrossRef]
- Gajda-Meissner, Z.; Matyja, K.; Brown, D.M.; Hartl, M.G.J.; Fernandes, T.F. Importance of surface coating to accumulation dynamics and acute toxicity of copper nanomaterials and dissolved copper in Daphnia magna. Environ. Toxicol. Chem. 2020, 39, 287–299. [Google Scholar] [CrossRef]
- Kubo, A.; Vasiliev, G.; Vija, H.; Krishtal, J.; Tougu, V.; Vishapuu, M.; Kisand, V.; Kahru, A.; Bondarenko, O.M. Surface carboxylation or PEGylation decrease CuO nanoparticles’ cytotoxicity in vitro without compromising their antibacterial properties. Arch. Toxicol. 2020, 94, 1561–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilves, M.; Kinaret, P.A.S.; Ndika, J.; Karisola, P.; Marwah, V.; Fortino, V.; Fedutik, Y.; Correia, M.; Ehrlich, N.; Loeschner, K.; et al. Surface PEGylation suppresses effects of CuO nanoparticles on allergen-induced lung inflammation. Partic. Fibre Toxicol. 2019, 16, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Loh, X.J.; Luo, Y.; Ge, S.; Tan, X.; Ruan, J. Insights into the epigenetic effects of nanomaterials. Biomater. Sci. 2020, 8, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.I.L.; Scott-Fordsmand, J.J.; Amorim, M.J.B. Alternative test methods for nanomaterial hazard assessment and recommendations for regulatory preparedness. Nano Today 2021, 20, 101242. [Google Scholar] [CrossRef]
- Thit, A.; Selck, H. Biodynamics and adverse effects of CuO nanoparticles and CuCl2 in the oligochaete T. tubifex: Cu form influences biodynamics in water but not in sediment. Nanotoxicology 2021, 15, 673–689. [Google Scholar] [CrossRef]
- Joshi, A.; Naatz, H.; Faber, K.; Pokhrel, S.; Dringen, R. Iron doping of copper oxide nanoparticles lowers their toxic potential in C6 glioma cells. Neurochem. Res. 2020, 43, 809–823. [Google Scholar] [CrossRef] [Green Version]
- Pugazhandi, A.; Kumar, S.C.; Menikandan, M.; Saravanan, M. Photocatalytic properties and antimicrobial efficacy of Fe doped Cu nanoparticles against the pathogenic bacteria and fungi. Microb. Pathog. 2018, 122, 84–89. [Google Scholar] [CrossRef]
- Burello, E.; Worth, A.P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 2011, 5, 228–235. [Google Scholar] [CrossRef]
- Katsnelson, B.A.; Minigaliyeva, I.A.; Pasov, V.; Privalova, L.T.; Varaksin, A.N.; Gurvich, V.B.; Sutunkova, M.P.; Shur, V.Y.; Shishina, E.; Valamina, I.E.; et al. Some patterns of metallic nanoparticles combined subchronic toxicity exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem. Toxicol. 2015, 86, 351–361. [Google Scholar] [CrossRef]
- Illarionova, N.; Mozorova, K.N.; Petrovskii, D.V.; Shaparova, M.B.; Romashchenko, A.V.; Troitskii, S.Y.; Kiselva, E.; Moshkin, V.M.; Moshkin, M.P. ‘Trojan Horse’ stress-granule formation mediated by manganese oxide nanoparticles. Nanotoxicology 2020, 14, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K. A review of copper poisoning in animals: Sheep, goats and cattle. Int. J. Veter. Sci. Anim. Husband. 2018, 3, 1–4. [Google Scholar]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.M.; Goodfellow, J.W.L.; Adams, W.J.; Menzie, Z.A. Critical review of exposure effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizishirazi, A.; Klemish, J.L.; Pyle, G.G. Sensitivity of amphibians to copper. Environ. Toxicol. Chem. 2021, 40, 1808–1819. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Peijnenburg, W.J.G.M.; Vijver, M.G. Review and prospects on the ecotoxicity of mixtures of nanoparticles and hybrid nanomaterial. Environ. Sci. Technol. 2022, 56, 15238–15250. [Google Scholar] [CrossRef]
- Tavernaro, I.; Dekkers, S.; Soeteman-Hernández, L.G.; Habeck-Engel, P.; Noorlander, C.; Kraegeloh, A. Safe-by-design part II: A strategy for balancing safety and functionality in the different stages of the innovation process. NanoImpact 2021, 24, 100354. [Google Scholar] [CrossRef]
- Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, V.; Lubart, R.; Gedanken, A. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small 2012, 8, 3326–3337. [Google Scholar] [CrossRef]
- Ananth, A.; Dharaneedharan, S.; Heo, M.S.; Mok, S.Y. Copper nanoparticles: Synthesis, characterization and structure-specific antibacterial performance. Chem. Eng. J. 2015, 262, 179–188. [Google Scholar] [CrossRef]
- Meghana, S.; Kabra, P.; Chakraborthy, S.; Padmavathy, N. Understanding the pathway of anti-bacterial activity of copper oxide nanoparticles. RSC Adv. 2015, 5, 12293–12299. [Google Scholar] [CrossRef]
- Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles.: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73. [Google Scholar] [CrossRef] [Green Version]
- Bala, N.; Sarkar, M.; Maiti, M.; Nandy, P.; Basu, R.; Das, S. Phenolic compound-mediated single-step fabrication of copper oxide nanoparticles for elucidating their influence on anti-bacterial and catalytic activities. New J. Chem. 2017, 41, 4458–4467. [Google Scholar] [CrossRef]
- Padmavathi, A.R.; Murthy, P.S.; Das, A.; Nishad, P.A.; Pandion, R.; Rao, T.S. Copper oxide nanoparticles as an effective anti-biofilm agent against a copper tolerant marine bacterium Staphylococcus lentus. Biofouling 2019, 35, 1007–1025. [Google Scholar] [CrossRef]
- Padmavathi, A.R.; Murthy, P.S.; Das, A.; Priya, A.; Sushmitha, T.J.; Pandion, R.; Toleti, S.R. Impediment to growth and yeast-to-hypha transition in Candida albicans by copper oxide nanoparticles. Biofouling 2020, 36, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Sohail, Y.; Raza, N.; Shakeel, N.; Raza, H.; Manzoor, S.; Yasmin, G.; Iqbal, A.; Manzoor, S.; Albaqami, M.D.; Wabaidur, S.M. Polyaniline coated nanoparticles of zinc oxide and copper oxide as antifungal agents against Aspergillus parasiticus. Front. Plant Sci. 2022, 13, 925451. [Google Scholar] [CrossRef] [PubMed]
- Sartin, M.M.; Yu, Z.; Chen, H.; He, F.; Sun, Z.; Chen, Y.; Huang, W. Effect of particle shape and electrolyte cation on CO adsorption to copper oxide nanoparticle electrocatalysts. J. Phys. Chem. C 2018, 46, 26489–26498. [Google Scholar] [CrossRef]
- Wang, G.; Ge, L.; Liu, Z.; Zhu, X.; Yang, S.; Wu, K.; Jin, P.; Zeng, X.; Zhang, X. Activation of peroxydisulfate by defect-rich CuO nanoparticles supported on layered MgO for organic pollutants degradation: An electron transfer mechanism. Chem. Eng. J. 2022, 43, 13406. [Google Scholar] [CrossRef]
- Maini, A.; Shah, M.A. Investigation of physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application. Int. J. Ceram. Eng. Sci. 2021, 3, 192–199. [Google Scholar] [CrossRef]
- Baghdadi, N.; Saeed, A.; Ansari, A.R.; Hammad, A.H.; Afifi, A.; Salah, N. Controlled nanostructuring via aluminum doping in CuO nanosheets to enhance thermoelectric performance. J. Alloys Compd. 2022, 869, 159370. [Google Scholar] [CrossRef]
Study | Object of Test | Hazard of PEGylated CuO Nanoparticles Compared with the Hazard of Pristine Nanoparticles |
---|---|---|
Tatsi et al. [43] | Earthworms | Reduced |
Conolly et al. [48] | Haemocytes and lysosomes of mussels | Increased |
Gajda-Meissner et al. [53] | Daphnia magna | Increased |
Kubo et al. [54] | THP-1 and HACA human cell lines | Reduced |
Ilves et al. [55] | Lungs of mice | Reduced |
Characteristic of Nanoparticle That Can Contribute to Hazard | Was This Addressed by Naatz et al. [39]? If So, What Impact of Doping Was Found? | Was This Addressed by Feng et al. [40]? If So, What Impact of Doping Was Found? |
---|---|---|
Release of metal ions | Yes, reduction of copper ion release was found. | No. |
Generation of reactive oxygens species (ROS) | No | Yes, a reduced generation of ROS was found |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reijnders, L. Safe Functional Modified CuO Nanoparticles? Appl. Sci. 2023, 13, 3425. https://doi.org/10.3390/app13063425
Reijnders L. Safe Functional Modified CuO Nanoparticles? Applied Sciences. 2023; 13(6):3425. https://doi.org/10.3390/app13063425
Chicago/Turabian StyleReijnders, L. 2023. "Safe Functional Modified CuO Nanoparticles?" Applied Sciences 13, no. 6: 3425. https://doi.org/10.3390/app13063425
APA StyleReijnders, L. (2023). Safe Functional Modified CuO Nanoparticles? Applied Sciences, 13(6), 3425. https://doi.org/10.3390/app13063425