Phenolic Compounds and Pyrrolizidine Alkaloids of Two North Bluebells: Mertensia stylosa and Mertensia serrulata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Plant Extracts Preparation
2.3. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC-PDA-ESI-tQ-MS) Metabolite Profiling
2.4. HPLC-PDA-ESI-tQ-MS Metabolite Quantification
2.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Metabolites of Mertensia stylosa and M. serrulata: LC-MS Profile
3.1.1. Pyrrolizidine Alkaloids
3.1.2. Phenolic Compounds
3.2. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyebode, O.; Kandala, N.B.; Chilton, P.J.; Lilford, R.J. Use of traditional medicine in middle-income countries: A WHO-SAGE study. Health Policy Plan. 2016, 31, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolsokhoyeva, N. Tibetan medical schools of the Aga area (Chita region). Asian Med. 2007, 3, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Aseeva, T.A.; Dashiyev, D.B.; Dashiyev, A.D.; Nikolayev, S.M.; Surkova, N.A.; Chekhirova, G.V.; Yurina, T.A. Tibetan Medicine of Buryats; Publishing House SB RAS: Novosibirsk, Russia, 2008; pp. 5–27. [Google Scholar]
- Batorova, S.M.; Yakovlev, G.P.; Aseeva, T.A. Reference-Book of Traditional Tibetan Medicine Herbs; Nauka: Novosibirsk, Russia, 2013; p. 207. [Google Scholar]
- The Plant List. Available online: http://www.theplantlist.org/1.1/browse/A/Boraginaceae/ (accessed on 6 February 2023).
- Nazaire, M.; Wang, X.-Q.; Hufford, L. Geographic origins and patterns of radiation of Mertensia (Boraginaceae). Am. J. Bot. 2014, 101, 104–118. [Google Scholar] [CrossRef]
- Komarov, V.L. Flora of the U.S.S.R.; AN U.S.S.R.: Moscow, Russia, 1953; Volume XIX, pp. 248–255. [Google Scholar]
- Gracie, C. Spring Wildflowers of the Northeast; Princeton University Press: Princeton, NJ, USA, 2012; pp. 222–227. [Google Scholar]
- Delort, E.; Jaquier, A.; Chapuis, C.; Rubin, M.; Starken-mann, C.J. Volatile composition of oyster leaf (Mertensia maritima (L.) Gray). J. Agric. Food Chem. 2012, 60, 11681–11690. [Google Scholar] [CrossRef]
- Fedoreyev, S.A.; Inyushkina, Y.V.; Bulgakov, V.P.; Veselova, M.V.; Tchernoded, G.K.; Gerasimenko, A.V.; Zhuravlev, Y.N. Production of allantoin, rabdosiin and rosmarinic acid in callus cultures of the seacoastal plant Mertensia maritima (Boraginaceae). Plant Cell Tissue Organ Cult. 2012, 110, 183–188. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, D.H.; Saini, R.K.; Gopal, J.; Keum, Y.S.; Sivanesan, I. Micropropagation and quantification of bioactive compounds in Mertensia maritima (L.) Gray. Int. J. Mol. Sci. 2019, 20, 2141. [Google Scholar] [CrossRef] [Green Version]
- Mädge, I.; Gehling, M.; Schöne, C.; Winterhalter, P.; These, A. Pyrrolizidine alkaloid profiling of four Boraginaceae species from Northern Germany and implications for the analytical scope proposed for monitoring of maximum levels. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1339–1358. [Google Scholar] [CrossRef]
- Damianakos, H.; Jeziorek, M.; Pietrosiuk, A.; Sykłowska-Baranek, K.; Chinou, I. Isolation of pyrrolizidine alkaloids from Cynoglossum columnae Ten. (Boraginaceae). Planta Med. 2013, 79, PI29. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Wei, X.; Ruan, W.; Vrieling, K. Current knowledge and perspectives of pyrrolizidine alkaloids in pharmacological applications: A mini-review. Molecules 2021, 26, 1970. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kartashova, M.E.; Velichko, V.V.; Kruglov, D.S. New flavonoids from Nonea rossica and Tournefortia sibirica. Chem. Nat. Compd. 2022, 58, 1021–1025. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Jafarova, G.S.; Isaev, J.I.; Olennikov, D.N.; Chirikova, N.K. Caucasian dragonheads: Phenolic compounds, polysaccharides, and bioactivity of Dracocephalum austriacum and Dracocephalum botryoides. Plants 2022, 11, 2126. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Polymeric compounds of lingonberry waste: Characterization of antioxidant and hypolipidemic polysaccharides and polyphenol-polysaccharide conjugates from Vaccinium vitis-idaea press cake. Foods 2022, 11, 2801. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Khandy, M.T.; Chirikova, N.K. Oriental strawberry metabolites: LC–MS profiling, antioxidant potential, and postharvest changes of Fragaria orientalis fruits. Horticulturae 2022, 8, 975. [Google Scholar] [CrossRef]
- Mori, K.; Kidawara, M.; Iseki, M.; Umegaki, C.; Kishi, T. A simple fluorimetric determination of vitamin C. Chem. Pharm. Bull. 1998, 46, 1474–1476. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Stermitz, F.R. Pyrrolizidine alkaloids from Mertensia species of Colorado. J. Nat. Prod. 1988, 51, 1289–1290. [Google Scholar] [CrossRef]
- Song, K.; Sivanesan, I.; Ak, G.; Zengin, G.; Cziáky, Z.; Jekő, J.; Rengasamy, K.R.; Lee, O.N.; Kim, D.H. Screening of bioactive metabolites and biological activities of calli, shoots, and seedlings of Mertensia maritima (L.) Gray. Plants 2020, 9, 1551. [Google Scholar] [CrossRef]
- Rizk, A.M. Naturally Occurring Pyrrolizidine Alkaloids; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Lyashenko, S.; González-Fernández, M.J.; Borisova, S.; Belarbi, E.H.; Guil-Guerrero, J.L. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds. Food Chem. 2021, 350, 128635. [Google Scholar] [CrossRef]
- Bruneton, J. Farmacognosia, 2nd ed.; Acribia: Zaragoza, Spain, 2008; ISBN 978-1-84585-006-7. [Google Scholar]
- Gottschalk, C.; Ronczka, S.; Preiß-Weigert, A.; Ostertag, J.; Klaffke, H.; Schafft, H.; Lahrssen-Wiederholt, M. Pyrrolizidine alkaloids in natural and experimental grass silages and implications for feed safety. Anim. Feed Sci. Technol. 2015, 207, 253–261. [Google Scholar] [CrossRef]
- El-Shazly, A.; Wink, M. Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity 2014, 6, 188–282. [Google Scholar] [CrossRef] [Green Version]
- Wiedenfeld, H. Plants containing pyrrolizidine alkaloids: Toxicity and problems. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 282–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, R.; Pereira, D.M.; Valentao, P.; Andrade, P.B. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 2018, 19, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuman, M.G.; Cohen, L.; Opris, M.; Nanau, R.M.; Hyunjin, J. Hepatotoxicity of pyrrolizidine alkaloids. J. Pharm. Pharm. Sci. 2015, 18, 825–843. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Han, H.; Wang, C.; Zheng, Q.; Chen, H.; Zhang, X.; Hou, R. Hepatotoxicity of pyrrolizidine alkaloid compound intermedine: Comparison with other pyrrolizidine alkaloids and its toxicological mechanism. Toxins 2021, 13, 849. [Google Scholar] [CrossRef]
- Schramm, S.; Köhler, N.; Rozhon, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules 2019, 24, 498. [Google Scholar] [CrossRef] [Green Version]
- Mattocks, A.R. Chemistry and Toxicology of Pyrrolizidine Alkaloids; Academic Press: London, UK, 1986; p. 41. [Google Scholar]
- Jin, J.; Li, H.; Zhao, G.; Jiang, S. Lycopsamine exerts protective effects and improves functional outcome after spinal cord injury in rats by suppressing cell death. Med. Sci. Monit. 2018, 24, 7444–7450. [Google Scholar] [CrossRef]
- In, J.K.; Kim, J.K.; Oh, J.S.; Seo, D.W. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int. J. Oncol. 2016, 48, 1907–1912. [Google Scholar] [CrossRef] [Green Version]
- Park, J.B. 5-Caffeoylquinic acid and caffeic acid orally administered suppress P-selectin expression on mouse platelets. J. Nutr. Biochem. 2009, 20, 800–805. [Google Scholar] [CrossRef]
- Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-Caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. LWT Food Sci. Technol. 2016, 65, 471–479. [Google Scholar] [CrossRef]
- Javed, H.; Khan, M.M.; Ahmad, A.; Vaibhav, K.; Ahmad, M.E.; Khan, A.; Ashafaq, M.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 2012, 17, 340–352. [Google Scholar] [CrossRef]
- Trumbeckaite, S.; Bernatoniene, J.; Majiene, D.; Jakstas, V.; Savickas, A.; Toleikis, A. The effect of flavonoids on rat heart mitochondrial function. Biomed. Pharmacother. 2006, 60, 245–248. [Google Scholar] [CrossRef]
- Richetti, S.K.; Blank, M.; Capiotti, K.M.; Piato, A.L.; Bogo, M.R.; Vianna, M.R.; Bonan, C.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res. 2011, 217, 10–15. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalam, K.; Gunasekaran, S.; Namasivayam, N. Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur. J. Pharmacol. 2016, 791, 37–50. [Google Scholar] [CrossRef]
- Xu, Y.; Han, S.; Lei, K.; Chang, X.; Wang, K.; Li, Z.; Liu, J. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. 2016, 25, 481–489. [Google Scholar] [CrossRef]
- Heo, S.K.; Noh, E.K.; Yoon, D.J.; Jo, J.C.; Koh, S.; Baek, J.H.; Park, J.H.; Min, Y.J.; Kim, H. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur. J. Pharmacol. 2015, 747, 36–44. [Google Scholar] [CrossRef]
- Karthik, D.; Viswanathan, P.; Anuradha, C.V. Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J. Cardiovasc. Pharmacol. 2011, 58, 514–521. [Google Scholar] [CrossRef]
- Jayanthy, G.; Roshana Devi, V.; Ilango, K.; Subramanian, S.P. Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK. J. Cell. Biochem. 2017, 118, 1839–1848. [Google Scholar] [CrossRef]
- Liang, Z.; Xu, Y.; Wen, X.; Nie, H.; Hu, T.; Yang, X.; Chu, X.; Yang, J.; Deng, X.; He, J. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 2016, 21, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Liu, P.; Yang, F.; Zhang, Y.H.; Miao, D. Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and Up-regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochem. Res. 2013, 38, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
Compound | Ionization a | CE b (eV) | Regression Equation c | r2 | Syx | LOD/LOQ (µg/mL) | Linear Range (µg/mL) | |
---|---|---|---|---|---|---|---|---|
a | b × 106 | |||||||
Lycopsamine | P | +20 | 1.6726 | −0.6389 | 0.9975 | 8.29 × 10−2 | 0.16/0.50 | 0.5–100.0 |
Lycopsamine N-oxide | P | +20 | 1.5787 | −0.3641 | 0.9981 | 6.48 × 10−2 | 0.14/0.41 | 0.5–100.0 |
Lycopsamine 7-O-acetate | P | +20 | 1.4196 | −0.4514 | 0.9989 | 5.76 × 10−2 | 0.14/0.41 | 0.5–100.0 |
Lycopsamine N-oxide 7-O-acetate | P | +20 | 2.4561 | −0.0171 | 0.9979 | 12.33 × 10−2 | 0.17/0.50 | 0.6–100.0 |
4-O-Caffeoylquinic acid | N | −15 | 0.9217 | −0.0437 | 0.9982 | 3.94 × 10−2 | 0.14/0.43 | 0.5–100.0 |
3-O-Caffeoylthreonic acid | N | −20 | 1.3586 | −0.0663 | 0.9987 | 9.69 × 10−2 | 0.24/0.71 | 0.8–100.0 |
2-O-Caffeoylthreonic acid | N | −20 | 1.3722 | −0.0829 | 0.9973 | 9.93 × 10−2 | 0.24/0.72 | 0.8–100.0 |
4-O-Coumaroylquinic acid | N | −20 | 0.6284 | −0.0517 | 0.9975 | 5.45 × 10−2 | 0.29/0.87 | 0.9–100.0 |
5-O-Caffeoylquinic acid | N | −15 | 0.9406 | −0.0497 | 0.9973 | 5.18 × 10−2 | 0.18/0.55 | 0.6–100.0 |
4-O-Feruloylquinic acid | N | −20 | 0.9214 | −0.0373 | 0.9997 | 2.10 × 10−2 | 0.07/0.22 | 0.3–100.0 |
2-O-Caffeoylglyceric acid | N | −20 | 0.8115 | −0.1006 | 0.9980 | 2.25 × 10−2 | 0.10/0.28 | 0.3–100.0 |
3-O-Caffeoylquinic acid | N | −15 | 0.9320 | −0.0523 | 0.9991 | 4.14 × 10−2 | 0.15/0.44 | 0.5–100.0 |
4-O-Caffeoylthreonic acid | N | −20 | 1.3620 | −0.0820 | 0.9961 | 9.91 × 10−2 | 0.21/0.72 | 0.8–100.0 |
3-O-Caffeoylglyceric acid | N | −20 | 0.8523 | −0.1004 | 0.9982 | 2.08 × 10−2 | 0.08/0.24 | 0.3–100.0 |
5-O-Coumaroylquinic acid | N | −20 | 0.9911 | −0.0379 | 0.9988 | 2.05 × 10−2 | 0.07/0.21 | 0.3–100.0 |
3-O-Coumaroylquinic acid | N | −20 | 0.9804 | −0.0210 | 0.9970 | 2.01 × 10−2 | 0.06/0.21 | 0.3–100.0 |
5-O-Feruloylquinic acid | N | −20 | 1.8535 | 0.0761 | 0.9989 | 4.55 × 10−2 | 0.08/0.25 | 0.3–100.0 |
2-O-Caffeoyltartronic acid | N | −15 | 1.5330 | −0.0863 | 0.9985 | 4.15 × 10−2 | 0.09/0.27 | 0.3–100.0 |
3-O-Feruloylquinic acid | N | −20 | 1.2416 | −0.3615 | 0.9901 | 3.02 × 10−2 | 0.08/0.24 | 0.3–100.0 |
Caftaric acid | N | −20 | 1.4238 | −0.0891 | 0.9901 | 7.33 × 10−2 | 0.17/0.52 | 0.6–100.0 |
Quercetin-3-O-rutinoside | N | −30 | 1.2716 | −0.7389 | 0.9897 | 9.14 × 10−2 | 0.23/0.72 | 0.8–100.0 |
Quercetin-3-O-glucoside | N | −30 | 1.8267 | −0.4160 | 0.9990 | 11.73 × 10−2 | 0.21/0.67 | 0.7–100.0 |
3,4-Di-O-caffeoylquinic acid | N | −20 | 1.6278 | −0.0428 | 0.9990 | 7.11 × 10−2 | 0.14/0.44 | 0.4–100.0 |
Kaempferol-3-O-rutinoside | N | −30 | 1.9634 | −0.4511 | 0.9952 | 9.18 × 10−2 | 0.15/0.46 | 0.5–100.0 |
3,5-Di-O-caffeoylquinic acid | N | −20 | 1.1105 | −0.3211 | 0.9937 | 4.18 × 10−2 | 0.12/0.38 | 0.4–100.0 |
4,5-Di-O-caffeoylquinic acid | N | −20 | 1.5632 | −0.0376 | 0.9983 | 5.14 × 10−2 | 0.11/0.33 | 0.4–100.0 |
Kaempferol-3-O-glucoside | N | −30 | 2.0859 | −0.9171 | 0.9980 | 6.18 × 10−2 | 0.03/0.09 | 0.1–100.0 |
Rosmarinic acid | N | −20 | 1.9610 | −0.5271 | 0.9993 | 0.94 × 10−2 | 0.02/0.05 | 0.5–100.0 |
No | tR, min | Compound a | ESI-MS, m/z | Content, mg/g of Dry Plant Weight ± S.D. b | ||
---|---|---|---|---|---|---|
[M+H]+ | MS/MS | M. stylosa | M. serrulata | |||
1 | 7.11 | Lycopsamine S | 300 | 282, 256, 210, 156, 138, 120, 94 | 0.94 ± 0.02 | 0.30 ± 0.00 |
2 | 7.96 | Lycopsamine N-oxide S | 316 | 298, 272, 254, 210, 172, 138, 120, 94 | 5.27 ± 0.10 | 2.14 ± 0.04 |
3• | 9.65 | Isomer 3 L | 342 | 324, 282, 256, 156, 138, 120, 94 | trace b | |
3 | 10.31 | Lycopsamine 7-O-acetate S | 342 | 300, 324, 282, 256, 156, 138, 120, 94 | 0.11 ± 0.00 | 0.02 ± 0.00 |
4• | 10.90 | Isomer 4 L | 358 | 340, 314, 298, 272, 254, 210, 172, 138, 120, 94 | trace | trace |
4 | 11.53 | Lycopsamine N-oxide 7-O-acetate S | 358 | 340, 314, 298, 272, 254, 210, 172, 138, 120, 94 | 0.37 ± 0.01 | trace |
Total content 1–4 | 6.69 | 2.46 |
No. | tr, min | Compound a | ESI-MS, m/z | Content, mg/g of Dry Plant Weight ± S.D. b | ||
---|---|---|---|---|---|---|
[M–H]−, m/z | MS/MS, m/z | M. stylosa | M. serrulata | |||
5 | 8.14 | 4-O-Caffeoylquinic acid S | 353 | 191, 179, 135 | 1.49 ± 0.03 | |
6 | 8.46 | 3-O-Caffeoylthreonic acid S | 297 | 179, 161, 135 | 0.90 ± 0.02 | |
7 | 9.04 | 2-O-Caffeoylthreonic acid S | 297 | 179, 161, 135 | 1.15 ± 0.02 | |
8 | 9.58 | 4-O-Coumaroylquinic acid S | 337 | 191, 173, 163 | trace b | |
9 | 10.40 | 5-O-Caffeoylquinic acid S | 353 | 191, 179, 135 | 43.41 ± 0.76 | 0.81 ± 0.02 |
10 | 10.51 | 4-O-Feruloylquinic acid S | 367 | 193, 191, 149 | trace | |
11 | 11.25 | 2-O-Caffeoylglyceric acid S | 267 | 179, 161, 135 | trace | |
12 | 11.46 | 3-O-Caffeoylquinic acid S | 353 | 191, 179, 135 | trace | |
13 | 11.48 | O-Caffeoyltartaric acid L | 311 | 179, 161, 135 | trace | |
14 | 11.51 | 4-O-Caffeoylthreonic acid S | 297 | 179, 161, 135 | 4.50 ± 0.09 | |
15 | 11.81 | 3-O-Caffeoylglyceric acid S | 267 | 179, 161, 135 | 2.53 ± 0.05 | |
16 | 11.88 | O-Caffeoyltartaric acid L | 311 | 179, 161, 135 | trace | |
17 | 12.60 | 5-O-Coumaroylquinic acid S | 337 | 191, 173, 163 | 1.22 ± 0.03 | |
18 | 13.34 | 3-O-Coumaroylquinic acid S | 337 | 191, 173, 163 | trace | |
19 | 13.47 | 5-O-Feruloylquinic acid S | 367 | 193, 191, 149 | 1.57 ± 0.03 | trace |
20 | 13.80 | 2-O-Caffeoyltartronic acid S | 281 | 179, 161, 135 | trace | |
21 | 14.20 | 3-O-Feruloylquinic acid S | 367 | 193, 191, 149 | trace | |
22 | 14.70 | Caftaric acid S | 311 | 179, 161, 135 | trace | |
23 | 15.31 | Quercetin-3-O-rutinoside S | 609 | 463, 301 | 42.40 ± 0.85 | 25.72 ± 0.51 |
24 | 15.58 | Quercetin-3-O-glucoside S | 463 | 301 | 3.16 ± 0.06 | |
25 | 15.84 | 3,4-Di-O-caffeoylquinic acid S | 515 | 353, 191, 173, 135 | trace | |
26 | 16.05 | Kaempferol-3-O-rutinoside S | 593 | 447, 285 | 6.52 ± 0.12 | 4.35 ± 0.08 |
27 | 16.19 | 3,5-Di-O-caffeoylquinic acid S | 515 | 353, 191, 173, 135 | 3.54 ± 0.07 | |
28 | 16.23 | 4,5-Di-O-caffeoylquinic acid S | 515 | 353, 191, 173, 135 | trace | |
29 | 16.46 | Kaempferol-3-O-glucoside S | 447 | 285 | trace | |
30 | 16.74 | Rosmarinic acid S | 359 | 197, 179, 161, 135 | 12.96 ± 0.25 | 1.94 ± 0.04 |
Total content | ||||||
hydroxycinnamates | 64.19 | 11.83 | ||||
flavonoids | 52.08 | 30.07 | ||||
phenolic compounds | 116.27 | 41.90 |
Object | Assay a | ||
---|---|---|---|
DPPH• b | ABTS•+ b | DMPD•+ b | |
M. stylosa herb extract | 21.17 ± 0.38 d | 15.33 ± 0.31 d | 79.34 ± 1.51 d |
M. serrulata herb extract | 37.95 ± 0.65 e | 24.02 ± 0.46 e | 96.11 ± 1.92 e |
Lycopsamine N-oxide | 397.45 ± 7.95 f | 275.62 ± 5.24 f | 572.86 ± 10.88 f |
5-O-caffeoylquinic acid | 8.14 ± 0.15 b | 7.29 ± 0.15 c | 21.14 ± 0.40 a |
Rutin | 9.54 ± 0.19 c | 5.89 ± 0.11 b | 38.19 ± 0.73 b |
Trolox c | 7.92 ± 0.16 a | 3.41 ± 0.06 a | 52.79 ± 1.06 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Phenolic Compounds and Pyrrolizidine Alkaloids of Two North Bluebells: Mertensia stylosa and Mertensia serrulata. Appl. Sci. 2023, 13, 3266. https://doi.org/10.3390/app13053266
Kashchenko NI, Olennikov DN, Chirikova NK. Phenolic Compounds and Pyrrolizidine Alkaloids of Two North Bluebells: Mertensia stylosa and Mertensia serrulata. Applied Sciences. 2023; 13(5):3266. https://doi.org/10.3390/app13053266
Chicago/Turabian StyleKashchenko, Nina I., Daniil N. Olennikov, and Nadezhda K. Chirikova. 2023. "Phenolic Compounds and Pyrrolizidine Alkaloids of Two North Bluebells: Mertensia stylosa and Mertensia serrulata" Applied Sciences 13, no. 5: 3266. https://doi.org/10.3390/app13053266
APA StyleKashchenko, N. I., Olennikov, D. N., & Chirikova, N. K. (2023). Phenolic Compounds and Pyrrolizidine Alkaloids of Two North Bluebells: Mertensia stylosa and Mertensia serrulata. Applied Sciences, 13(5), 3266. https://doi.org/10.3390/app13053266