Study of Sound Perception Evaluation in Refrigeration Gases
Abstract
:1. Introduction
Noise Emission in Refrigeration
2. Materials and Methods
2.1. Experimental Setup
- Simple vapor compression refrigeration circuit;
- Refrigeration area to be cooled;
- Control system.
2.1.1. Single Refrigerant Circuit
2.1.2. Refrigerated Enclosure
2.1.3. Control System
- Refrigeration circuit system:
- Defrost system:
2.2. Refrigerants
2.3. Noise Measurement
2.4. Sound Quality Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Midgley, T.; Henne, A.L., Jr. Organic Fluorides as Refrigerants 1. Ind. Eng. Chem. 1930, 22, 542–545. [Google Scholar] [CrossRef]
- European Union. Regulation (eu) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006.2014; European Union: Brussels, Belgium, 2014. [Google Scholar]
- Serdar, C.C.N. Emmanuel, Studies on the flow-induced noise at the evaporator of a refrigerating system. Appl. Therm. Eng. 2011, 31, 2485–2493. [Google Scholar]
- Jang, S.; Choung, H.; Park, S.; Lee, S. Investigation on noise of rotary compressors using fluid-structure interaction. J. Mech. Sci. Technol. 2019, 33, 5129–5135. [Google Scholar] [CrossRef] [Green Version]
- Venkatappa, S.; Koberstein, M.; Liu, Z. NVH Challenges with Introduction of New Refrigerant HFO-1234yf. In Proceedings of the WCX™ 17: SAE World Congress Experience, Detroit, MI, USA, 5–6 April 2017; pp. 1–5. [Google Scholar]
- He, Z.; Li, D.; Han, Y.; Zhou, M.; Xing, Z.; Wang, X. Noise Control of a Twin-Screw Refrigeration Compressor. Int. J. Refrig. 2021, 124, 30–42. [Google Scholar] [CrossRef]
- Espíndola, R.S.; Knabben, F.T.; Melo, C.; Hermes, C.J. Performance evaluation of household refrigerators running with R600a contaminated with non-condensable gases. Int. J. Refrig. 2020, 111, 86–93. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, Y.; Liu, Y.; Ma, Y.; Xiao, C.; Wu, T. Experimental study on reducing the noise of horizontal household freezers. Appl. Therm. Eng. 2014, 68, 107–114. [Google Scholar] [CrossRef]
- Navrud, S. The Economic Value of Noise Within the European Union—A Review and Analysis of Studies. Acta Acust. 2004, 89, 14–17. [Google Scholar]
- York Council. Air Conditioning Units and Refrigeration Noise. 2022. Available online: https://www.york.gov.uk/AirConditioningNoise (accessed on 1 January 2022).
- Council of New York. Noise from Air Conditioner of Ventilation Equipment. 2022. Available online: https://portal.311.nyc.gov/article/?kanumber=KA-01933 (accessed on 1 January 2022).
- Environmental Energy Agency. EPA Establishes New Noise Label Program. 2022. Available online: https://www.epa.gov/archive/epa/aboutepa/epa-establishes-new-noise-label-program.html (accessed on 1 January 2022).
- Berry, B.F. The work of I-INCE Technical Study Group 2 on noise labels for consumer and industrial products. Noise Health 2003, 5, 21–24. [Google Scholar] [PubMed]
- Europena Union. Directive 2000/14/EC of the European Parliament and of the Council of 8 May 2000 on the Approximation of the Laws of the Member States Relating to the Noise Emission in The Environment by Equipment for Use Outdoors; European Union: Brussels, Belgium, 2000. [Google Scholar]
- European Union. Regulation (EC) No 219/2009 of the European Parliament and of the Council of 11 March 2009 Adapting a Number of Instruments Subject to the Procedure Referred to in Article 251 of the Treaty to Council Decision 1999/468/EC with Regard to the Regulatory Procedure with Scrutiny; European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Union. Regulation (EU) 2019/1243 of the European Parliament and of the Council of 20 June 2019 Adapting a Number of Legal Acts Providing for the Use of the Regulatory Procedure with Scrutiny to Articles 290 and 291 of the Treaty on the Functioning of the European Union; European Union: Brussels, Belgium, 2019. [Google Scholar]
- ISO532-1 2017; Acoustics—Methods for Calculating Loudness—Part 1: Zwicker Method. ISO: Geneva, Switzerland, 2017.
- Al-Obaidi, A.R.; Towsyfyan, H. An Experimental Study on Vibration Signatures for Detecting Incipient Cavitation in Centrifugal Pumps Based on Envelope Spectrum Analysis. J. Appl. Fluid Mech. 2019, 12, 2057–2067. [Google Scholar] [CrossRef]
- Al-Obaidi, A.R.; Mishra, R. Experimental Investigation of the Effect of Air Injection on Performance and Detection of Cavitation in the Centrifugal Pump Based on Vibration Technique. Arab. J. Sci. Eng. 2020, 45, 5657–5671. [Google Scholar] [CrossRef]
- Al-Obaidi, A. Experimental Comparative Investigations to Evaluate Cavitation Conditions within a Centrifugal Pump Based on Vibration and Acoustic Analyses Techniques. Arch. Acoust. 2020, 45, 541–556. [Google Scholar]
- Wu, H.; Shen, Y.; Liang, M.; Liu, J.; Wu, J.; Li, Z. Performance Research and Optimization of Sound Insulation Hood of Air Compressor Unit. Appl. Sci. 2021, 11, 10364. [Google Scholar] [CrossRef]
- Cingiz, Z.; Katircioğlu, F.; Saridemir, S.; Yildiz, G.; Yusuf, Ç.A.Y. Experimental investigation of the effects of different refrigerants used in the refrigeration system on compressor vibrations and noise. Int. Adv. Res. Eng. J. 2021, 5, 152–162. [Google Scholar] [CrossRef]
- Peñarrocha, I.; Llopis, R.; Tárrega, L.; Sánchez, D.; Cabello, R. A new approach to optimize the energy efficiency of CO2 transcritical refrigeration plants. Appl. Therm. Eng. 2014, 67, 137–146. [Google Scholar] [CrossRef] [Green Version]
Component and Sensor | Voltage | Current | Technical Specifications |
---|---|---|---|
Compresor | 400 V AC/3 phases/50 Hz | 1.94 A | Frascold model A (Milan, Italy) 0.5–4Y semi-hermetic reciprocating, single stage. Refrigerant 404A. Power 0.87 kW, mass Flow 56 kg/h |
Condenser | 400 V AC/3 phases/50 Hz | 0.17 A | EBM model A4D300-AP28-01-with airflow 1860 m3/h-1370 rpm, power 0.06 kW |
Evaporator | 400 V AC/3 phases/50 Hz | 0.33 A | S&P model HRB/4-315-with airflow 1900 m3/h-1450 rpm, power 0.08 kW |
Expansión Valve | Danfoss model TSE2. Refrigerant R404 A externally balanced union Danfoss model TSE2. Refrigerant R134 A externally balanced union | ||
Solenoide valve | 230 V AC | Danfoss model EVR10, solder connection ½” | |
Liquid Receiver Accumulator | Frascold, pressure 32 bar, volumen 1.5 L, safety valve 27.5 bar connection ¼” NPT | ||
Drier-Filter | Danfoss model DCL084S capacity 100 cm3, solder connection ½” | ||
Sight glass | Danfoss model 3940/4 solder connection ½” | ||
Process Monitoring, recording and control program | Siemens model TP227-6. 1 DP port profibus-mpi protocol, 1 RJ45 port TCP-IP protocol Siemens model Simatic S7-313C-2D. 2 DP port profibus-mpi protocol Variables can be monitored, changed, and saved on the computer. These can be opened with Microsoft EXCEL | ||
Thermostat | 230 V AC | AKO model, 3 digit numeric display, 2 NTC/PTC temperature sensor, 3 relay output, 1 digital input | |
Pressure Transmitter low | 8/28 V DC | 4–20 mA | Osaka model, pressure range −0.5/7 bar |
Pressure Transmitter high | 8/28 V DC | 4–20 mA | Osaka model, pressure range 0/30 bar |
Temperature Transmitter (indoor chamber, evaporator, condenser ambient | 12/32 V DC | 4–20 mA | Osaka model S6S-2, temperature range −50/+50 °C bar, type PT100, accuracy ± 5 µA |
Specification | R-134A | R-449A |
---|---|---|
Refrigerant Composition (Mass %) | 100 R-134A | 25.5–26.7 R-134A 24.3–25.5 HFO 1234yf 24.5–25.7 R125 23.3–24.5 R32 |
Molecular Weight (g/mol) | 102 | 87.2 |
Critical temperatura (°C) | 101.1 | 81.5 |
Critical Pressure (bar) | 40.67 | 44.5 |
Oil | Polyol ester POE | Polyol ester POE |
ODP | 0 | 0 |
GWP | 1430 * | 1397 * |
Loudness | Low Pressure [Bar] | High Pressure [Bar] | Refrigerant Gas | Control System | |
---|---|---|---|---|---|
Loudness | 1.000 | 0.161 * | 0.162 * | −0.283 ** | −0.866 ** |
Low pressure [bar] | 0.161 * | 1.000 | 0.911 ** | −0.858 ** | 0.599 ** |
High pressure [bar] | 0.162 * | 0.911 ** | 1.000 | −0.756 ** | 0.526 ** |
Refrigerant gas | −0.283 ** | −0.858 ** | −0.756 ** | 1.000 | −0.217 ** |
Control system | −0.866 ** | 0.599 ** | 0.526 ** | −0.217 ** | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Cantalejo, R.D.; Vázquez-Serrano, F.; Cubero-Atienza, A.J.; Redel-Macías, M.D. Study of Sound Perception Evaluation in Refrigeration Gases. Appl. Sci. 2023, 13, 3079. https://doi.org/10.3390/app13053079
Rodríguez-Cantalejo RD, Vázquez-Serrano F, Cubero-Atienza AJ, Redel-Macías MD. Study of Sound Perception Evaluation in Refrigeration Gases. Applied Sciences. 2023; 13(5):3079. https://doi.org/10.3390/app13053079
Chicago/Turabian StyleRodríguez-Cantalejo, Rafael David, Francisco Vázquez-Serrano, Antonio J. Cubero-Atienza, and María Dolores Redel-Macías. 2023. "Study of Sound Perception Evaluation in Refrigeration Gases" Applied Sciences 13, no. 5: 3079. https://doi.org/10.3390/app13053079
APA StyleRodríguez-Cantalejo, R. D., Vázquez-Serrano, F., Cubero-Atienza, A. J., & Redel-Macías, M. D. (2023). Study of Sound Perception Evaluation in Refrigeration Gases. Applied Sciences, 13(5), 3079. https://doi.org/10.3390/app13053079