Exploration Technology of Adverse Geological Body in Karst Development Area Based on Borehole Multi-Source Data
Abstract
:1. Introduction
2. Borehole Multi-Source Data Acquisition Technology
2.1. Borehole Optical Imaging Technology
2.2. Borehole Directional Acoustic Scanning Technology
2.3. Borehole Radar Technology
3. Detection Technology of Adverse Geological Bodies
3.1. Borehole Multi-Source Heterogeneous Detection Technology
3.2. Borehole Multi-Source Data Fusion Analysis Method
3.2.1. Analysis of Extension Range of Structural Plane
3.2.2. Analysis of Cavity Extension Range
3.2.3. Joint Interpretation of Borehole Multi-Source Data
4. Case Analysis
4.1. Project Overview
4.2. Data Acquisition
4.3. Comprehensive Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.L.; Kang, W.F.; Zhang, N. Application of High Density Resistivity Method to Karst Exploration. J. East China Inst. Technol. 2011, 34, 452. [Google Scholar]
- Xue, Y.; Ranjith, P.G.; Gao, F.; Zhang, Z.; Wang, S. Experimental investigations on effects of gas pressure on mechanical behaviors and failure characteristic of coals. J. Rock Mech. Geotech. Eng. 2022, 15, 412–428. [Google Scholar] [CrossRef]
- Gourmelen, G. A Dynamically Reconfigurable Autonomous Underwater Robot for Karst Exploration: Design and Experiment. Sensors 2022, 22, 3379. [Google Scholar]
- Bosch, F.P.; Müller, I. Improved karst exploration by VLF-EM-gradient survey: Comparison with other geophysical methods. Near Surf. Geophys. 2005, 3, 299–310. [Google Scholar] [CrossRef]
- Nazar, A.; Doloei, J. Geophysical Prospecting Methods of Seismic Borehole, Seismic Refraction and Geoelectric in Engineering Studies. J. Phys. Earth 2007, 2, 65–70. [Google Scholar]
- Eisner, L.; Hulsey, B.J.; Duncan, P.; Jurick, D.; Werner, H.; Keller, W. Comparison of surface and borehole locations of induced seismicity. Geophys. Prospect. 2010, 58, 809–820. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, J.; Liang, X.; Li, X.; Wang, S.; Ma, Z.; Zhang, S.; Jiao, X. Influence mechanism of brine-gas two-phase flow on sealing property of anisotropic caprock for hydrogen and carbon energy underground storage. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Tian, M.Z.; Song, H.B.; Sun, J. Geophysical prospecting high technologies of marine gas hydrates. Prog. Geophys. 2000, 15, 1–6. [Google Scholar]
- Yuan, G.Q.; Xiong, S.Q.; Meng, Q.M.; Zhou, X.; Lin, P. Application Research of Geophysical Prospecting Techniques. Acta Geol. Sin. 2011, 85, 1744–1805. [Google Scholar]
- Zhang, Z.; Li, Z.; Xu, G.; Gao, X.; Liu, Q.; Li, Z.; Liu, J. Lateral abutment pressure distribution and evolution in wide pillars under the first mining effect. Int. J. Min. Sci. Technol. 2023, in press. [Google Scholar] [CrossRef]
- Banks, D.; Odling, N.E.; Skarphagen, H.; Rohr-Torp, E. Permeability and stress in crystalline rocks. Terra Nov. 1996, 8, 223–235. [Google Scholar] [CrossRef]
- Manoutsoglou, E.; Lazos, I.; Steiakakis, E.; Vafeidis, A. The Geomorphological and Geological Structure of the Samaria Gorge, Crete, Greece—Geological Models Comprehensive Review and the Link with the Geomorphological Evolution. Appl. Sci. 2022, 12, 10670. [Google Scholar] [CrossRef]
- Steiakakis, E.; Monopolis, D.; Vavadakis, D.; Manutsoglu, E. Hydrogeological research in Trypali carbonate Unit (NW Crete). In Advances in the Research of Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 2011; pp. 561–567. [Google Scholar] [CrossRef]
- Stober, I.; Bucher, K. Origin of salinity of deep groundwater in crystalline rocks. Terra Nov. 1999, 11, 181–185. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Hu, S.; Han, Q.; Wang, Y. Study on the extraction method of structural plane parameters from borehole images. Geotech. Mech. 2017, 38, 3074–3080. [Google Scholar]
- Wang, J.; Wang, C.; Tang, X. A method for determining the three-dimensional contour of the void based on the ultrasonic scanning technology in the borehole. J. Yangtze River Acad. Sci. 2018, 35, 104–109. [Google Scholar]
- Wang, J.; Wang, C.; Hu, S.; Han, Z. Survey accuracy analysis of panoramic borehole optical imaging technology. J. Rock Mech. Eng. 2015, 34, 4038–4046. [Google Scholar]
- Wang, J.; Wang, C.; Du, Q.; Luo, P.; Huang, J. Research on 3D visualization of geological boreholes based on photo-acoustic combination measurement. Chin. J. Rock Mech. Eng. 2023, 42, 649–660. [Google Scholar]
- Wang, J.; Chen, W.; Wang, Y.; Zou, J. Coral reef pore recognition and feature extraction based on borehole image. Mar. Georesources Geotechnol. 2021, 40, 159–170. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Zou, J. Fine detection technology of rock mass structure based on borehole acousto-optic combined measurement. Measurement 2022, 187, 110259. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Han, Z.; Jiao, Y.; Zou, J. Study of hidden structure detection for tunnel surrounding rock with pulse reflection method. Measurement 2020, 159, 107791. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Han, Z.; Zou, X.; Wang, Y.; Wang, C.; Hu, S. Characteristic Parameters Extraction Method of Hidden Karst Cave from Borehole Radar Signal. Int. J. Geomech. 2020, 6, 04020113. [Google Scholar] [CrossRef]
- Olsson, O.; Falk, L.; Forslund, O.; Lundmark, L.; Sandberg, E. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock. Geophys. Prospect. 2010, 40, 109–142. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, S.J.; Yi, M.J. Borehole radar survey to explore limestone cavities for the construction of a highway bridge. Explor. Geophys. 2004, 35, 80–87. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Chen, W.; Wang, C.; Han, Z. Evaluation method of rock mass structure integrity based on borehole multivariate data. Int. J. Geomech. 2022, 22, 04021248. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Huang, X.; Zou, J. Research on multi-frequency ultrasonic scanning detecting technology of cavity in the test borehole. Bull. Eng. Geol. Environ. 2020, 80, 1249–1264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Sui, S.; Xu, H.; Wang, J.; Wang, F. Exploration Technology of Adverse Geological Body in Karst Development Area Based on Borehole Multi-Source Data. Appl. Sci. 2023, 13, 2955. https://doi.org/10.3390/app13052955
Liu W, Sui S, Xu H, Wang J, Wang F. Exploration Technology of Adverse Geological Body in Karst Development Area Based on Borehole Multi-Source Data. Applied Sciences. 2023; 13(5):2955. https://doi.org/10.3390/app13052955
Chicago/Turabian StyleLiu, Wenlian, Sugang Sui, Hanhua Xu, Jinchao Wang, and Feng Wang. 2023. "Exploration Technology of Adverse Geological Body in Karst Development Area Based on Borehole Multi-Source Data" Applied Sciences 13, no. 5: 2955. https://doi.org/10.3390/app13052955
APA StyleLiu, W., Sui, S., Xu, H., Wang, J., & Wang, F. (2023). Exploration Technology of Adverse Geological Body in Karst Development Area Based on Borehole Multi-Source Data. Applied Sciences, 13(5), 2955. https://doi.org/10.3390/app13052955