EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanoka, J.I.; Bell, R.O. Electron-Beam-Induced Currents in Semiconductors. Ann. Rev. Mater. Sci. 1981, 11, 353–380. [Google Scholar] [CrossRef]
- Leamy, H.J. Charge collection scanning electron microscopy. J. Appl. Phys. 1982, 53, R51–R80. [Google Scholar] [CrossRef]
- Yakimov, E.B. Electron-beam-induced-current study of defects in GaN; Experiments and simulation. J. Phys. Condens. Matter. 2002, 14, 13069–13077. [Google Scholar] [CrossRef]
- Yakimov, E.B. Study of Wide-Gap Semiconductors Using Electron-Beam Induced Current Method. Crystallogr. Rep. 2021, 66, 581–593. [Google Scholar] [CrossRef]
- Donolato, C. Theory of beam induced current characterization of grain boundaries in polycrystalline solar cells. J. Appl. Phys. 1983, 54, 1314–1322. [Google Scholar] [CrossRef]
- Donolato, C. Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor. J. Appl. Phys. 1998, 84, 2656–2664. [Google Scholar] [CrossRef]
- Chen, J.; Sekiguchi, T.; Fukata, N.; Takase, M.; Chikyow, T.; Yamabe, K.; Hasunuma, R.; Akasaka, Y.; Inumiya, S.; Nara, Y.; et al. Observation of leakage sites in a hafnium silicon oxynitride gate dielectric of a metal-oxide-semiconductor field-effect transistor device by electron-beam-induced current. Appl. Phys. Lett. 2006, 89, 222104. [Google Scholar] [CrossRef]
- Chen, J.; Sekiguchi, T.; Fukata, N.; Takase, M.; Nemoto, Y.; Hasunuma, R.; Yamabe, K.; Sato, M.; Yamada, K.; Chikyow, T. An Electron-Beam-Induced Current Investigation of Electrical Defects in High-k Gate Stacks. ECS Trans. 2010, 28, 299–313. [Google Scholar] [CrossRef]
- Aris, F.C.; Davies, P.M.; Lewis, T.J. Electron-beam-induced conduction in dielectrics. J. Phys. C Solid State Phys. 1976, 9, 797–808. [Google Scholar] [CrossRef]
- Nakamae, K.; Fujioka, H.; Ura, K. Electron-beam-induced current in a chemical-vapour-deposited SiO2 passivation layer on an MOS structure with a non-penetrating electron beam. J. Phys. D Appl. Phys. 1991, 24, 963–968. [Google Scholar] [CrossRef]
- Hoskins, B.D.; Adam, G.C.; Strelcov, E.; Zhitenev, N.; Kolmakov, A.; Strukov, D.B.; McClelland, J.J. Stateful characterization of resistive switching TiO2 with electron beam induced currents. Nat. Commun. 2017, 8, 1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhaj, M.; Jbara, O.; Filippov, M.N.; Rau, E.I.; Andrianov, M.V. Analysis of two methods of measurements of surface potential of insulators in SEM: Electron spectroscopy and X-ray spectroscopy methods. Appl. Surf. Sci. 2001, 177, 58–65. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Feng, R.-J.; Ura, K. Utilizing the charging effect in scanning electron microscopy. Sci. Prog. 2004, 87, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Vergeles, P.S.; Kulanchikov, Y.O.; Yakimov, E.B. Charging Effects in Al-SiO2-p-Si Structures After Low-Energy Electron Beam Irradiation. J. Electron. Mater. 2020, 49, 5178–5183. [Google Scholar] [CrossRef]
- Ding, Z.J.; Li, C.; Da, B.; Liu, J. Charging effect induced by electron beam irradiation: A review. Sci. Technol. Adv. Mater. 2021, 22, 932–971. [Google Scholar] [CrossRef]
- Rau, E.I.; Tatarintsev, A.A. Modification of the model of charging dielectrics under electron beam irradiation. J. Appl. Phys. 2022, 132, 184102. [Google Scholar] [CrossRef]
- Rossel, C.; Meijer, G.I.; Brémaud, D.; Widmer, D. Electrical current distribution across a metal–insulator–metal structure during bistable switching. J. Appl. Phys. 2001, 90, 2892–2898. [Google Scholar] [CrossRef] [Green Version]
- Regan, B.C.; Lodico, J.; Hubbard, W.A. Scanning TEM EBIC Imaging of Resistive Memory Switching Processes. Microsc. Microanal. 2018, 24 (Suppl. S1), 1806–1807. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Gao, B.; Chi, M.; Xia, Q.; Yang, J.J.; Qian, H.; Wu, H. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 2019, 10, 3453. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Chen, J.; Sekiguchi, T. Electron-Beam-Induced Current and Cathodoluminescence Study of Dislocations in SrTiO3. Crystals 2020, 10, 736. [Google Scholar] [CrossRef]
- Koveshnikov, S.; Kononenko, O.; Soltanovich, O.; Kapitanova, O.; Knyazev, M.; Volkov, V.; Yakimov, E. Multiple Resistive Switching Mechanisms in Graphene Oxide-Based Resistive Memory Devices. Nanomaterials 2022, 12, 3626. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.H.; Gao, B.; Deng, N.; Lu, Z.; Haukness, B.; Bronner, G.; Qian, H. Resistive Random Access Memory for Future Information Processing System. Proc. IEEE 2017, 105, 1770–1789. [Google Scholar] [CrossRef]
- Hong, H.; Loy, D.J.; Dananjaya, P.A.; Tan, F.; Ng, C.; Lew, W. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Cai, F.; Yen, S.-H.; Uppala, A.; Thomas, L.; Liu, T.; Fu, P.; Zhang, X.; Low, A.; Kamalanathan, D.; Hsu, J.; et al. A Fully Integrated System-on-Chip Design with Scalable Resistive Random-Access Memory Tile Design for Analog in-Memory Computing. Advanc. Intellig. Syst. 2022, 4, 2200014. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Kwon, J.; Sharma, A.; Chen, C.-Y.; Fantini, A.; Jurczak, M.; Herzing, A.; Bain, J.; Picard, Y.; Skowronski, M. Transient thermometry and high resolution transmission electron microscopy analysis of filamentary resistive switchers. ACS Appl. Mater. Interfaces 2016, 8, 20176–20184. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Graves, C.; Strachan, J.; Grafals, E.; Kilcoyne, A.; Tyliszczak, T.; Weker, J.; Nishi, Y.; Williams, S. Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. 2016, 28, 2772–2776. [Google Scholar] [CrossRef] [Green Version]
- Celano, U.; Goux, L.; Degraeve, R.; Fantini, A.; Richard, O.; Bender, H.; Jurczak, M.; Vandervorst, W. Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 2015, 15, 7970–7975. [Google Scholar] [CrossRef]
- Yakimov, E.B. Electron beam induced excess carrier concentration. Phys. Status Solidi C 2017, 14, 1600266. [Google Scholar] [CrossRef]
- Porro, S.; Accornero, E.; Pirri, C.F.; Ricciardi, C. Memristive devices based on graphene oxide. Carbon 2015, 85, 383–396. [Google Scholar] [CrossRef]
- Romero, F.J.; Toral, A.; Medina-Rull, A.; Moraila-Martinez, C.L.; Morales, D.P.; Ohata, A.; Godoy, A.; Ruiz, F.G.; Rodriguez, N. Resistive Switching in Graphene Oxide. Front. Mater. 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Brzhezinskaya, M.; Kapitanova, O.O.; Kononenko, O.V.; Koveshnikov, S.; Korepanov, V.; Roshchupkin, D. Large-scalable graphene oxide films with resistive switching for nonvolatile memory applications. J. Alloys Compd. 2020, 849, 156699. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improve synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Panin, G.N.; Kapitanova, O.O.; Lee, S.W.; Baranov, A.N.; Kang, T.W. Resistive switching in Al/graphene oxide/Al structure. Jpn. J. Appl. Phys. 2011, 50, 070110. [Google Scholar] [CrossRef]
- Rasheed, M.; Shihab, S.; Sabah, O.W. An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents. J. Phys. Confer. Ser. 2021, 1795, 012052. [Google Scholar] [CrossRef]
- Zaitsev, S.I.; Pavlov, V.N.; Panchenko, V.Y.; Polikarpov, M.A.; Svintsov, A.A.; Yakimov, E.B. Comparison of the Efficiency of 63Ni Beta_Radiation Detectors Made from Silicon and Wide-Gap Semiconductors. J. Surf. Investig. 2014, 8, 843–845. [Google Scholar] [CrossRef]
- Svintsov, A.A.; Knyazev, M.A.; Zaitsev, S.I. Calculation of the Absorbed Electron Energy 3D Distribution by the Monte Carlo Method, Presentation of the Proximity Function by Three Parameters α, β, η and Comparison with the Experiment. Materials 2022, 15, 3888. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, L.; Cutroneo, M.; Torrisi, A.; Silipigni, L. Measurements on Five Characterizing Properties of Graphene Oxide and Reduced Graphene Oxide Foils. Phys. Status Solidi A 2022, 219, 2100628. [Google Scholar] [CrossRef]
- Tyagi, C.; Lakshmi, G.B.V.S.; Kumar, S.; Tripathi, A.; Avasthi, D.K. Structural changes in graphene oxide thin film by electron-beam irradiation. Nuclear Instrum. Methods Phys. Res. B 2016, 379, 171–175. [Google Scholar] [CrossRef]
- de Lima, A.H.; Tavares, C.T.; da Cunha, C.C.S.; Vicentini, N.C.; Carvalho, G.R.; Fragneaud, B.; Maciel1, I.O.; Legnani, C.; Quirino, W.G.; de Oliveira, L.F.C.; et al. Origin of optical bandgap fluctuations in graphene oxide. Eur. Phys. J. B 2020, 93, 105. [Google Scholar] [CrossRef]
- Sharma, N.; Arif, M.; Monga, S.; Shkir, M.; Mishra, Y.K.; Singh, A. Investigation of bandgap alteration in graphene oxide with different reduction routes. Appl. Surface Sci. 2020, 513, 145396. [Google Scholar] [CrossRef]
- Yakimov, E.B.; Polyakov, A.Y.; Shchemerov, I.V.; Smirnov, N.B.; Vasilev, A.A.; Vergeles, P.S.; Yakimov, E.E.; Chernykh, A.V.; Ren, F.; Pearton, S.J. Experimental estimation of electron–hole pair creation energy in β-Ga2O3. Appl. Phys. Lett. 2021, 118, 202106. [Google Scholar] [CrossRef]
- Borisov, S.S.; Vergeles, P.S.; Yakimov, E.B. Investigations of Electron Beam Induced Conductivity in Silicon Oxide Thin Films. J. Surf. Investig. 2010, 4, 754–757. [Google Scholar] [CrossRef]
- Lin, Y.; Joy, D.C. A new examination of secondary electron yield data. Surf. Interface Anal. 2005, 37, 895–900. [Google Scholar] [CrossRef]
- Ji, S.; Min, B.K.; Kim, S.K.; Myung, S.; Kang, M.; Shin, H.-S.; Song, W.; Heo, J.; Lim, J.; An, K.-S.; et al. Work function engineering of grapheme oxide via covalent functionalization for organic field-effect transistors. Appl. Surf. Sci. 2017, 419, 252–258. [Google Scholar] [CrossRef]
- Ledra, M.; Tabet, N. Monte Carlo simulation of the EBIC collection efficiency of a Schottky nanocontact. Superlatt. Microstruct. 2009, 45, 444–450. [Google Scholar] [CrossRef]
- Doan, Q.T.; El Hdiy, A.; Troyon, M. Three-dimensional simulation of electron beam induced current collected by a nano-contact: Diffusion and collection analysis. J. Appl. Phys. 2011, 110, 124515. [Google Scholar] [CrossRef]
- Donolato, C. An Analytical Model of SEM and STEM Charge Collection Images of Dislocations in Thin Semiconductor Layers I. Minority Carrier Generation, Diffusion, and Collection. Phys. Status Solidi A 1981, 65, 649–658. [Google Scholar] [CrossRef]
- Donolato, C. Approximate analytical solution to the space charge problem in nanosized Schottky diodes. J. Appl. Phys. 2004, 95, 2184–2186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakimov, E.B.; Koveshnikov, S.; Kononenko, O. EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching. Appl. Sci. 2023, 13, 2481. https://doi.org/10.3390/app13042481
Yakimov EB, Koveshnikov S, Kononenko O. EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching. Applied Sciences. 2023; 13(4):2481. https://doi.org/10.3390/app13042481
Chicago/Turabian StyleYakimov, Eugene B., Sergei Koveshnikov, and Oleg Kononenko. 2023. "EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching" Applied Sciences 13, no. 4: 2481. https://doi.org/10.3390/app13042481
APA StyleYakimov, E. B., Koveshnikov, S., & Kononenko, O. (2023). EBIC Imaging of Conductive Paths Formed in Graphene Oxide as a Result of Resistive Switching. Applied Sciences, 13(4), 2481. https://doi.org/10.3390/app13042481