What Changes Occur in the Brain of Veteran? A Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Control Group
2.3. MRI Examination Protocol
2.4. Analysis of MRI and 1HMRS Data
2.5. Statistical Analysis
3. Results
3.1. Findings from the MRI of the Heads of Soldiers
3.2. 1HMRS Spectroscopy–Soldiers vs. Control
3.3. 1HMRS Spectroscopy in Soldiers—The Comparison between the Brain Hemispheres
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hetherington, H.P.; Hamid, H.; Kulas, J.; Ling, G.; Bandak, F.; de Lanerolle, N.C.; Pan, J.W. MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. Magn. Reson. Med. 2014, 71, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Military Health System. DoD TBI Worldwide Numbers. 2020. Available online: https://health.mil/About-MHS/OASDHA/Defense-Health-Agency/Research-and-Development/Traumatic-Brain-Injury-Center-of-Excellence/DoD-TBI-Worldwide-Numbers (accessed on 13 February 2021).
- Riedy, G.; Senseney, J.S.; Liu, W.; Ollinger, J.; Sham, E.; Krapiva, P.; Patel, J.; Smith, A.; Yeh, P.-H.; Graner, J.; et al. Findings from Structural MR Imaging in Military Traumatic Brain Injury. Radiology 2016, 279, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Koerte, I.K.; Lin, A.P.; Willems, A.; Muehlmann, M.; Hufschmidt, J.; Coleman, M.J.; Green, I.; Liao, H.; Tate, D.; Wilde, E.A.; et al. A Review of Neuroimaging Findings in Repetitive Brain Trauma. Brain Pathol. 2015, 25, 318–349. [Google Scholar] [CrossRef]
- Wilde, E.A.; Bouix, S.; Tate, D.; Lin, A.P.; Newsome, M.R.; Taylor, B.; Stone, J.R.; Montier, J.; Gandy, S.E.; Biekman, B.; et al. Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: State of the art and potential benefits. Brain Imaging Behav. 2015, 9, 367–402. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.S.; Lin, A.P.; Koerte, I.K.; Pasternak, O.; Liao, H.; Merugumala, S.; Bouix, S.; Shenton, M.E. Neuroimaging in repetitive brain trauma. Alzheimer’s Res. Ther. 2014, 6, 10. [Google Scholar] [CrossRef]
- Bhattrai, A.; Irimia, A.; Van Horn, J.D. Neuroimaging of traumatic brain injury in military personnel: An overview. J. Clin. Neurosci. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Sheth, C.; Prescot, A.P.; Legarreta, M.; Renshaw, P.F.; McGlade, E.; Yurgelun-Todd, D. Increased myoinositol in the anterior cingulate cortex of veterans with a history of traumatic brain injury: A proton magnetic resonance spectroscopy study. J. Neurophysiol. 2020, 123, 1619–1629. [Google Scholar] [CrossRef]
- Kontos, A.; Van Cott, A.C.; Roberts, J.; Pan, J.W.; Kelly, M.B.; McAllister-Deitrick, J.; Hetherington, H.P. Clinical and Magnetic Resonance Spectroscopic Imaging Findings in Veterans With Blast Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder. Mil. Med. 2017, 182, 99–104. [Google Scholar] [CrossRef]
- Mariano, L.J.; Irvine, J.M.; Rowland, B.; Liao, H.; Heaton, K.; Orlovsky, I.; Finkelstein, K.; Lin, A.P. Virtual biopsy: Distinguishing post-traumatic stress from mild traumatic brain injury using magnetic resonance spectroscopy. In Proceedings of the 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2017), Washington, DC, USA, 10–12 October 2017; Institute of Electrical and Electronics Engineers Inc.: Washington, DC, USA, 2017; pp. 235–240. [Google Scholar]
- Kimbrell, T.; Leulf, C.; Cardwell, D.; Komoroski, R.A.; Freeman, T.W. Relationship of in vivo medial temporal lobe magnetic resonance spectroscopy to documented combat exposure in veterans with chronic posttraumatic stress disorder. Psychiatry Res. Neuroimaging 2005, 140, 91–94. [Google Scholar] [CrossRef]
- Brown, S.; Freeman, T.; Kimbrell, T.; Cardwell, D.; Komoroski, R. In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of former prisoners of war with and without posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci. 2003, 15, 367–370. [Google Scholar] [CrossRef]
- Schuff, N.; Neylan, T.C.; Lenoci, M.A.; Du, A.T.; Weiss, D.S.; Marmar, C.R.; Weiner, M.W. Decreased hippocampal N-acetylaspartate in the absence of atrophy in posttraumatic stress disorder. Biol. Psychiatry 2001, 50, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Freeman, T.W.; Cardwell, D.; Karson, C.N.; Komoroski, R.A. In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of subjects with combat-related posttraumatic stress disorder. Magn. Reson. Med. 1998, 40, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.; Jarnagin, J.; Rowland, B.; Liao, H.; Stern, R.; Lin, A. Magnetic Resonance Spectroscopy as a Biomarker for Chronic Traumatic Encephalopathy. Semin. Neurol. 2017, 37, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Bartnik-Olson, B.L.; Alger, J.R.; Babikian, T.; Harris, A.D.; Holshouser, B.; Kirov, I.I.; Maudsley, A.A.; Thompson, P.M.; Dennis, E.L.; Tate, D.F.; et al. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: Recommendations from the ENIGMA MRS working group. Brain Imaging Behav. 2021, 15, 504–525. [Google Scholar] [CrossRef]
- Toklu, H.Z.; Yang, Z.; Oktay, S.; Sakarya, Y.; Kirichenko, N.; Matheny, M.K.; Muller-Delp, J.; Strang, K.; Scarpace, P.J.; Wang, K.K.; et al. Overpressure blast injury-induced oxidative stress and neuroinflammation response in rat frontal cortex and cerebellum. Behav. Brain Res. 2018, 340, 14–22. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Robinson, M.E. Military-related traumatic brain injury and neurodegeneration. Alzheimer’s Dement. 2014, 10, S242–S253. [Google Scholar] [CrossRef]
- Skotak, M.; LaValle, C.; Misistia, A.; Egnoto, M.J.; Chandra, N.; Kamimori, G. Occupational blast wave exposure during multiday 0.50 caliber rifle course. Front. Neurol. 2019, 10, 797. [Google Scholar] [CrossRef]
- Zipf, R.K.; Cashdollar, K.L.; Centers for Disease Control and Prevention. Explosions and Refuge Chambers. Available online: https://www.cdc.gov/niosh/docket/archive/pdfs/niosh-125/125-explosionsandrefugechambers.pdf (accessed on 13 February 2021).
- Kiroǧlu, Y.; Karabulut, N.; Oncel, C.; Yagci, B.; Sabir, N.; Ozdemir, B. Cerebral lateral ventricular asymmetry on CT: How much asymmetry is representing pathology? Surg. Radiol. Anat. 2008, 30, 249–255. [Google Scholar] [CrossRef]
- Chen, J.-J.; Chen, C.-J.; Chang, H.-F.; Chen, D.-L.; Hsu, Y.-C.; Chang, T.-P. Prevalence of Cavum Septum Pellucidum and/or Cavum Vergae in Brain Computed Tomographies of Taiwanese. Acta Neurol. Taiwan 2014, 23, 49–54. [Google Scholar]
- Pauling, K.J.; Bodensteiner, J.B.; Hogg, J.P.; Schaefer, G.B. Does selection bias determine the prevalence of the cavum septi pellucidi? Pediatr. Neurol. 1998, 19, 195–198. [Google Scholar] [CrossRef]
- Lakis, N.; Corona, R.J.; Toshkezi, G.; Chin, L.S. Chronic traumatic encephalopathy—Neuropathology in athletes and war veterans. Neurol. Res. 2013, 35, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, E.; Riascos, R.; Arevalo, O. Imaging of Chronic Concussion. Neuroimaging Clin. N. Am. 2018, 28, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Rauschecker, A.M.; Nabavizadeh, S.A.; Mohan, S. Neuroimaging of Dilated Perivascular Spaces: From Benign and Pathologic Causes to Mimics. J. Neuroimaging 2018, 28, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Bomsztyk, E.; Gonen, O.; Mannon, L.J.; Grossman, R.I.; Rusinek, H. Dilated perivascular spaces: Hallmarks of mild traumatic brain injury. Am. J. Neuroradiol. 2005, 26, 719–724. [Google Scholar] [PubMed]
- Tate, D.F.; Gusman, M.; Kini, J.; Reid, M.; Velez, C.S.; Drennon, A.M.; Cooper, D.B.; Kennedy, J.E.; Bowles, A.O.; Bigler, E.D.; et al. Susceptibility Weighted Imaging and White Matter Abnormality Findings in Service Members With Persistent Cognitive Symptoms Following Mild Traumatic Brain Injury. Mil. Med. 2017, 182, e1651–e1658. [Google Scholar] [CrossRef]
- Parsel, S.M.; Riley, C.A.; McCoul, E.D. Combat zone exposure and respiratory tract disease. Int. Forum. Allergy Rhinol. 2018, 8, 964–969. [Google Scholar] [CrossRef]
- Barth, S.K.; Dursa, E.K.; Peterson, M.R.; Schneiderman, A. Prevalence of respiratory diseases among veterans of operation enduring freedom and operation Iraqi freedom: Results from the national health study for a new generation of U.S. Veterans. Mil. Med. 2015, 179, 241–245. [Google Scholar] [CrossRef] [Green Version]
Sequence | TR [ms] | TE [ms] | NEX | Slice Thickness [mm] |
---|---|---|---|---|
T1 BRAVO | 8.6 | 3.2 | 0.5 | 2 |
T2 | 4374 | 102 | 1 | 5 |
T2 CUBE | 2500 | 114.7 | 1 | 1.4 |
PRESS | 1500 | 35 | 8 | 20 |
Neurocranium | Viscerocranium | ||||
---|---|---|---|---|---|
Finding | % of Soldiers | No. of Soldiers | Finding | % of Soldiers | No. of Soldiers |
Asymmetry of the lateral ventricles | 11.1% | 6 | Sinusitis | 38.9% | 21 |
Dilated perivascular spaces | 7.4% | 4 | Paranasal sinus retention cyst | 14.8% | 8 |
Enlargement of the subarachnoid spaces | 7.4% | 4 | Sinonasal polyps | 3.7% | 2 |
Cavum septum pellucidum and cavum vergae | 5.6% | 3 | |||
Post-ischemic encephalomalacia | 3.7% | 2 | |||
Pineal cyst | 3.7% | 2 | |||
White matter hyperintensities | 1.9% | 1 | |||
Empty sella | 1.9% | 1 | |||
Meningioma | 1.9% | 1 |
Location | Metabolite | Soldiers | Control Group | |||
---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | p Value | ||
Frontal lobes | NAA/Cr | 1.981 ± 0.282 | 1.905–2.058 | 2.220 ± 0.380 | 2.107–2.333 | 0.001 |
Cho/Cr | 0.943 ± 0.125 | 0.909–0.977 | 0.907 ± 0.100 | 0.878–0.937 | 0.121 | |
mI/Cr | 1.936 ± 1.009 | 1.637–2.236 | 1.374 ± 0.538 | 1.214–1.534 | 0.005 | |
Occipital lobes | NAA/Cr | 1.959 ± 0.232 | 1.896–2.023 | 2.108 ± 0.287 | 2.023–2.193 | 0.005 |
Cho/Cr | 0.822 ± 0.347 | 0.727–0.917 | 0.794 ± 0.071 | 0.773–0.815 | 0.714 | |
mI/Cr | 0.821 ± 0.096 | 0.795–0.848 | 0.785 ± 0.092 | 0.758–0.812 | 0.056 |
Location | Metabolite | Right Side | Left Side | |||
---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | p Value | ||
Frontal lobes | NAA/Cr | 2.009 ± 0.407 | 1.896–2.122 | 1.936 ± 0.435 | 1.815–2.057 | 0.240 |
Cho/Cr | 0.926 ± 0.151 | 0.885–0.968 | 0.950 ± 0.201 | 0.894–1.006 | 0.514 | |
mI/Cr | 2.446 ± 1.277 | 2.099–2.848 | 0.845 ± 0.251 | 0.783–0.927 | <0.001 | |
Occipital lobes | NAA/Cr | 1.875 ± 0.279 | 1.797–1.953 | 2.056 ± 0.332 | 1.963–2.148 | 0.003 |
Cho/Cr | 0.773 ± 0.112 | 0.737–0.805 | 0.781 ± 0.122 | 0.745–0.818 | 0.640 | |
mI/Cr | 0.805 ± 0.113 | 0.774–0.837 | 0.831 ± 0.127 | 0.796–0.867 | 0.230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanik, A.; Kucybała, I.; Guła, P.; Brożyna, M.; Guz, W. What Changes Occur in the Brain of Veteran? A Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy Study. Appl. Sci. 2023, 13, 1882. https://doi.org/10.3390/app13031882
Urbanik A, Kucybała I, Guła P, Brożyna M, Guz W. What Changes Occur in the Brain of Veteran? A Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy Study. Applied Sciences. 2023; 13(3):1882. https://doi.org/10.3390/app13031882
Chicago/Turabian StyleUrbanik, Andrzej, Iwona Kucybała, Przemysław Guła, Maciej Brożyna, and Wiesław Guz. 2023. "What Changes Occur in the Brain of Veteran? A Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy Study" Applied Sciences 13, no. 3: 1882. https://doi.org/10.3390/app13031882
APA StyleUrbanik, A., Kucybała, I., Guła, P., Brożyna, M., & Guz, W. (2023). What Changes Occur in the Brain of Veteran? A Magnetic Resonance Imaging and Proton Magnetic Resonance Spectroscopy Study. Applied Sciences, 13(3), 1882. https://doi.org/10.3390/app13031882