Motion Technologies in Support of Fence Athletes: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Data Analysis
3. Results
3.1. Included Studies
3.2. Technological Setup and Models
Methodological Quality Criteria | |||||||
---|---|---|---|---|---|---|---|
S1 | S2 | 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | |
Said et al. [19] | Y | Y | Y | N | Y | Y | U |
Klauck et al. [20] | Y | N | Y | N | Y | Y | U |
Zhang et al. [21] | Y | N | Y | N | Y | Y | U |
Williams et al. [32] | Y | Y | Y | N | Y | Y | Y |
Gholipour et al. [17] | Y | Y | Y | Y | Y | Y | Y |
Mantovani et al. [12] | Y | Y | U | U | Y | N | N |
SuchaNwski et al. [36] | Y | U | N | N | U | Y | N |
Morris et al. [11] | Y | N | N | N | Y | Y | N |
Bottoms et al. [8] | Y | Y | Y | Y | Y | Y | Y |
Gutierrez-Davila et al. [23] | Y | Y | Y | Y | Y | Y | Y |
Gutierrez-Davila et al. [22] | Y | Y | Y | Y | Y | Y | Y |
Borysiuk et al. [31] | Y | Y | Y | N | Y | U | Y |
Sinclair et al. [29] | Y | Y | Y | Y | Y | Y | Y |
Sinclair et al. [24] | Y | Y | Y | U | Y | Y | Y |
Guilhem et al. [34] | Y | Y | Y | N | Y | Y | Y |
Borysiuk et al. [33] | Y | Y | U | U | Y | U | N |
Moorea et al. [16] | Y | N | N | N | N | U | N |
Sinclair et al. [8] | Y | Y | Y | Y | Y | Y | Y |
Kim et al. [27] | Y | Y | Y | Y | Y | Y | Y |
Borysiuk [35] | Y | Y | U | N | Y | U | U |
Malawski et al. [37] | Y | Y | Y | Y | Y | Y | U |
Mawgoud et al. [40] | Y | Y | U | U | Y | U | U |
Guan et al. [14] | Y | Y | Y | Y | Y | Y | Y |
Plantard et al. [15] | Y | Y | Y | Y | Y | U | U |
Chuanjie et al. [18] | Y | Y | Y | Y | Y | Y | U |
O’Reilly et al. [39] | Y | Y | Y | Y | Y | Y | Y |
Blazkiewicz et al. [13] | Y | Y | Y | Y | Y | Y | Y |
Mulloy et al. [28] | Y | Y | Y | Y | Y | Y | Y |
Sorel et al. [2] | Y | Y | Y | Y | Y | Y | Y |
Borysiuk et al. [10] | Y | Y | Y | Y | Y | Y | Y |
Milic et al. [26] | Y | Y | Y | Y | Y | Y | Y |
Grontman et al. [25] | Y | U | U | U | Y | U | U |
Borysiuk et al. [30] | Y | Y | Y | Y | Y | Y | Y |
Chtara et al. [42] | Y | Y | Y | Y | Y | Y | Y |
Malawski [38] | Y | Y | Y | Y | Y | U | U |
3.3. Purpose and Algorithms
3.4. Assessment of Quality
4. Discussion
4.1. Technological Setup and Biomechanical Models
4.2. Purpose and Algorithms
4.3. Review Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bianchedi, D. The Science of Fencing. Sports Med. 2008, 38, 465–481. [Google Scholar]
- Sorel, A.; Plantard, P.; Bideau, N.; Pontonnier, C. Studying fencing lunge accuracy and response time in uncertain conditions with an innovative simulator. PLoS ONE 2019, 14, e0218959. [Google Scholar] [CrossRef] [PubMed]
- Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors 2019, 19, 1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, B.P.; Olmedo, J.M.J. Application of motion capture technology for sport performance analysis. Retos Nuevas Tendencias Educ. Física Deporte Recreación 2017, 32, 241–247. [Google Scholar]
- Lim, J.Z.; Sim, A.; Kong, P.W. Wearable Technologies in Field Hockey Competitions: A Scoping Review. Sensors 2021, 21, 5242. [Google Scholar] [CrossRef]
- Düking, P.; Fuss, F.K.; Holmberg, H.C.; Sperlich, B. Recommendations for assessment of the reliability, sensitivity, and validity of data provided by wearable sensors designed for monitoring physical activity. JMIR mHealth uHealth 2018, 6, e9341. [Google Scholar] [CrossRef]
- Hong, Q.N.; Pluye, P.; Fàbregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Gagnon, M.P.; Griffiths, F.; Nicolau, B.; et al. VP26 A critical appraisal tool for systematic mixed studies reviews. Int. J. Technol. Assess. Health Care 2018, 34, 166. [Google Scholar] [CrossRef]
- Bottoms, L.; Greenhalgh, A.; Sinclair, J. Kinematic determinants of weapon velocity during the fencing lunge in experienced épée fencers. Acta Bioeng. Biomech. 2013, 15, 109–113. [Google Scholar]
- Bottoms, L.; Sinclair, J. Gender differences in limb and joint stiffness during the fencing lunge. Cent. Eur. J. Sport Sci. Med. 2015, 11, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Borysiuk, Z.; Markowska, N.; Konieczny, M.; Kręcisz, K.; Błaszczyszyn, M.; Nikolaidis, P.T.; Knechtle, B.; Pakosz, P. Flèche versus Lunge as the Optimal Footwork Technique in Fencing. Int. J. Environ. Res. Public Health 2019, 16, 2315. [Google Scholar] [CrossRef] [Green Version]
- Morris, N.; Farnsworth, M.; Robertson, D. Kinetic analyses of two fencing attacks–lunge and fleche. In Proceedings of the ISBS-Conference Proceedings Archive, Porto, Portugal, 27 June–1 July 2011. [Google Scholar]
- Mantovani, G.; Ravaschio, A.; Piaggi, P.; Landi, A. Fine classification of complex motion pattern in fencing. Procedia Eng. 2010, 2, 3423–3428. [Google Scholar] [CrossRef]
- Błażkiewicz, M.; Borysiuk, Z.; Gzik, M. Determination of loading in the lower limb joints during step-forward lunge in fencing. Acta Bioeng. Biomech. 2018, 20, 3–8. [Google Scholar] [PubMed]
- Guan, Y.; Guo, L.; Wu, N.; Zhang, L.; Warburton, D.E. Biomechanical insights into the determinants of speed in the fencing lunge. Eur. J. Sport Sci. 2018, 18, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Plantard, P.; Sorel, A.; Bideau, N.; Pontonnier, C. Motion adaptation in fencing lunges: A pilot study. Comput. Methods Biomech. Biomed. Eng. 2017, 20, S161–S162. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.C.; Chow, F.M.; Chow, J.Y. Novel lunge biomechanics in modern Sabre fencing. Procedia Eng. 2015, 112, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Gholipour, M.; Tabrizi, A.; Farahmand, F. Kinematics analysis of lunge fencing using stereophotogrametry. World J. Sport Sci. 2008, 1, 32–37. [Google Scholar]
- Chuanjie, Z.; Zhengwei, F. Biomechanical analysis of knee joint mechanism of the national women’s epee fencing lunge movement. Biomed. Res. (0970-938X) 2017, 28, 104–110. [Google Scholar]
- Hassan, S.E.; Klauck, J. Kinematics of lower and upper extremities motions during the fencing lunge: Results and training implications. In Proceedings of the ISBS-Conference Proceedings Archive, Konstanz, Germany, 21–25 July 1998. [Google Scholar]
- Klauck, J.; Hassan, S.E. Lower and upper extremity coordination parameters during the fencing lunge. In Proceedings of the ISBS-Conference Proceedings Archive, Konstanz, Germany, 21–25 July 1998. [Google Scholar]
- Zhang, B.; Chu, D.; Hong, Y. Biomechanical analysis of the lunge technique in the elite female fencers. In Proceedings of the ISBS-Conference Proceedings Archive, Perth, WA, Australia, 30 June–6 July 1999. [Google Scholar]
- Gutierrez-Davila, M.; Rojas, F.J.; Antonio, R.; Navarro, E. Response timing in the lunge and target change in elite versus medium-level fencers. Eur. J. Sport Sci. 2013, 13, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Dávila, M.; Rojas, F.J.; Caletti, M.; Antonio, R.; Navarro, E. Effect of target change during the simple attack in fencing. J. Sport. Sci. 2013, 31, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Bottoms, L. Gender differences in the kinetics and lower extremity kinematics of the fencing lunge. Int. J. Perform. Anal. Sport 2013, 13, 440–451. [Google Scholar] [CrossRef]
- Grontman, A.; Horyza, Ł.; Koczan, K.; Marzec, M.; Śmiertka, M.; Trybała, M. Analysis of sword fencing training evaluation possibilities using Motion Capture techniques. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest, Hungary, 2–4 June 2020; pp. 325–330. [Google Scholar]
- Milic, M.; Nedeljkovic, A.; Cuk, I.; Mudric, M.; García-Ramos, A. Comparison of reaction time between beginners and experienced fencers during quasi-realistic fencing situations. Eur. J. Sport Sci. 2020, 20, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kil, S.; Chung, J.; Moon, J.; Oh, E. Effects of specific muscle imbalance improvement training on the balance ability in elite fencers. J. Phys. Ther. Sci. 2015, 27, 1589–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulloy, F.; Mullineaux, D.R.; Graham-Smith, P.; Irwin, G. An applied paradigm for simple analysis of the lower limb kinematic chain in explosive movements: An example using the fencing foil attacking lunge. Int. Biomech. 2018, 5, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Taylor, P.J.; Bottoms, L. The appropriateness of the helical axis technique and six available cardan sequences for the representation of 3-d lead leg kinematics during the fencing lunge. J. Hum. Kinet. 2013, 37, 7. [Google Scholar] [CrossRef] [PubMed]
- Borysiuk, Z.; Nowicki, T.; Piechota, K.; Błaszczyszyn, M. Neuromuscular, perceptual, and temporal determinants of movement patterns in wheelchair fencing: Preliminary study. BioMed Res. Int. 2020, 2020, 6584832. [Google Scholar] [CrossRef] [PubMed]
- Borysiuk, Z.; Piechota, K.; Minkiewicz, T. Analysis of performance of the fencing lunge with regard to the difficulty level of a technical-tactical task. J. Combat. Sport. Martial Arts 2013, 4, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.; Walmsley, A. Response timing and muscular coordination in fencing: A comparison of elite and novice fencers. J. Sci. Med. Sport 2000, 3, 460–475. [Google Scholar] [CrossRef]
- Borysiuk, Z.; Markowska, N.; Niedzielski, M. Analysis of the fencing lunge based on the response to a visual stimulus and a tactile stimulus. J. Combat. Sport. Martial Arts 2014, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Guilhem, G.; Giroux, C.; Couturier, A.; Chollet, D.; Rabita, G. Mechanical and muscular coordination patterns during a high-level fencing assault. Med. Sci. Sports Exerc. 2014, 46, 341–350. [Google Scholar] [CrossRef]
- Borysiuk, Z. Type of perception vs. lunge in fencing technique structure. Rev. Artes Marciales Asiát. 2016, 11, 36–37. [Google Scholar] [CrossRef] [Green Version]
- Suchanowski, A.; Boryszewski, Z.; Pakosz, P. Electromyography signal analysis of the fencing lunge by Magda Mroczkiewicz, the leading world female competitor in foil. Balt. J. Health Phys. Act. 2011, 3, 4. [Google Scholar] [CrossRef]
- Malawski, F.; Kwolek, B. Classification of basic footwork in fencing using accelerometer. In Proceedings of the 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 21–23 September 2016; pp. 51–55. [Google Scholar] [CrossRef]
- Malawski, F. Depth Versus Inertial Sensors in Real-Time Sports Analysis: A Case Study on Fencing. IEEE Sens. J. 2021, 21, 5133–5142. [Google Scholar] [CrossRef]
- O’Reilly, M.A.; Whelan, D.F.; Ward, T.E.; Delahunt, E.; Caulfield, B. Classification of lunge biomechanics with multiple and individual inertial measurement units. Sports Biomech. 2017, 16, 342–360. [Google Scholar] [CrossRef]
- Mawgoud, A.A.; Abu-Talleb, A.; El Karadawy, A.I.; Eltabey, M.M. The Appliance of Artificial Neural Networks in Fencing Sport Via Kinect Sensor. Available online: https://www.researchgate.net/profile/Ahmed-A-Mawgoud/publication/343055177_The_Appliance_of_Artificial_Neural_Networks_in_Fencing_Sport_Via_Kinect_Sensor/links/5f141f25299bf1e548c365ce/The-Appliance-of-Artificial-Neural-Networks-in-Fencing-Sport-Via-Kinect-Sensor.pdf (accessed on 1 December 2020).
- Riehle, H.J.; Vieten, M.M. ISBS ’98: XVI International Symposium on Biomechanics in Sports. In Proceedings of the ISBS-Conference Proceedings Archive, Konstanz, Germany, 21–25 July 1998. [Google Scholar]
- Chtara, H.; Negra, Y.; Chaabene, H.; Chtara, M.; Cronin, J.; Chaouachi, A. Validity and reliability of a new test of change of direction in fencing athletes. Int. J. Environ. Res. Public Health 2020, 17, 4545. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.; Lawrence, S.; Rechichi, C.; Bishop, D.; Dawson, B.; Goodman, C. Time–motion analysis of elite field hockey, with special reference to repeated-sprint activity. J. Sport. Sci. 2004, 22, 843–850. [Google Scholar] [CrossRef]
- Harmer, P.A. Incidence and characteristics of time-loss injuries in competitive fencing: A prospective, 5-year study of national competitions. Clin. J. Sport Med. 2008, 18, 137–142. [Google Scholar] [CrossRef]
- Chen, T.L.W.; Wong, D.W.C.; Wang, Y.; Ren, S.; Yan, F.; Zhang, M. Biomechanics of fencing sport: A scoping review. PLoS ONE 2017, 12, e0171578. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Miller, S.; Stewart, P.; Cree, J.; Ingram, R.; Dimitriou, L.; Moody, J.; Kilduff, L. Strength and conditioning for fencing. Strength Cond. J. 2013, 35, 1–9. [Google Scholar] [CrossRef]
- Zadeh, A.; Taylor, D.; Bertsos, M.; Tillman, T.; Nosoudi, N.; Bruce, S. Predicting sports injuries with wearable technology and data analysis. Inf. Syst. Front. 2021, 23, 1023–1037. [Google Scholar] [CrossRef]
- Bahr, R. Demise of the fittest: Are we destroying our biggest talents? Br. J. Sport. Med. 2014, 48, 1265–1267. [Google Scholar] [CrossRef] [Green Version]
- Rigozzi, C.J.; Vio, G.A.; Poronnik, P. Application of wearable technologies for player motion analysis in racket sports: A systematic review. Int. J. Sport. Sci. Coach. 2022, 17479541221138015. [Google Scholar] [CrossRef]
- Magalhaes, F.A.d.; Vannozzi, G.; Gatta, G.; Fantozzi, S. Wearable inertial sensors in swimming motion analysis: A systematic review. J. Sport. Sci. 2015, 33, 732–745. [Google Scholar] [CrossRef]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 2022, 10, e12995. [Google Scholar] [CrossRef] [PubMed]
- Türker, H.; Sze, H. Surface electromyography in sports and exercise. Electrodiagn. New Front. Clin. Res. 2013, 175–194. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European recommendations for surface electromyography. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Yiou, E.; Do, M. In fencing, does intensive practice equally improve the speed performance of the touché when it is performed alone and in combination with the lunge? Int. J. Sport. Med. 2000, 21, 122–126. [Google Scholar] [CrossRef]
- Bobbert, M.F.; van Soest, A.J.K. Why do people jump the way they do? Exerc. Sport Sci. Rev. 2001, 29, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Ning, C. Design and research of motion video image analysis system in sports training. Multimed. Tools Appl. 2019, 1–19. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Dempster, W.T. Space Requirements of the Seated Operator, Geometrical, Kinematic, and Mechanical Aspects of the Body with Special Reference to the Limbs; Technical Report; Michigan State Univ East Lansing: Lansing, MI, USA, 1955. [Google Scholar]
- Aresta, S.; Bortone, I.; Bottiglione, F.; Di Noia, T.; Di Sciascio, E.; Lofù, D.; Musci, M.; Narducci, F.; Pazienza, A.; Sardone, R.; et al. Combining Biomechanical Features and Machine Learning Approaches to Identify Fencers’ Levels for Training Support. Appl. Sci. 2022, 12, 12350. [Google Scholar] [CrossRef]
Category of Study Designs | Methodological Quality Criteria | Response | ||
---|---|---|---|---|
Y | N | U | ||
Screening questions (for all types) | S1. Are there clear research questions? | |||
S2. Do the collected data allow to address the research questions? | ||||
Quantitative descriptive | 4.1. Is the sampling strategy relevant to address the research question? | |||
4.2. Is the sample representative of the target population? | ||||
4.3. Are the measurements appropriate? | ||||
4.4. Is the risk of nonresponse bias low? | ||||
4.5. Is the statistical analysis appropriate to answer the research question? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aresta, S.; Musci, M.; Bottiglione, F.; Moretti, L.; Moretti, B.; Bortone, I. Motion Technologies in Support of Fence Athletes: A Systematic Review. Appl. Sci. 2023, 13, 1654. https://doi.org/10.3390/app13031654
Aresta S, Musci M, Bottiglione F, Moretti L, Moretti B, Bortone I. Motion Technologies in Support of Fence Athletes: A Systematic Review. Applied Sciences. 2023; 13(3):1654. https://doi.org/10.3390/app13031654
Chicago/Turabian StyleAresta, Simona, Mariapia Musci, Francesco Bottiglione, Lorenzo Moretti, Biagio Moretti, and Ilaria Bortone. 2023. "Motion Technologies in Support of Fence Athletes: A Systematic Review" Applied Sciences 13, no. 3: 1654. https://doi.org/10.3390/app13031654
APA StyleAresta, S., Musci, M., Bottiglione, F., Moretti, L., Moretti, B., & Bortone, I. (2023). Motion Technologies in Support of Fence Athletes: A Systematic Review. Applied Sciences, 13(3), 1654. https://doi.org/10.3390/app13031654