Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Data Acquisition and Preprocessing
2.4. Feature Extraction
2.5. Artificial Intelligence Modeling
2.5.1. Deep Learning Model
2.5.2. Deep Learning Training
3. Results
3.1. Performance
3.2. Explainability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slimani, M.; Znazen, H.; Bragazzi, N.L.; Zguira, M.S.; Tod, D. The Effect of Mental Fatigue on Cognitive and Aerobic Performance in Adolescent Active Endurance Athletes: Insights from a Randomized Counterbalanced, Cross-Over Trial. J. Clin. Med. 2018, 7, 510. [Google Scholar] [CrossRef] [Green Version]
- Pergher, V.; Vanbilsen, N.; Van Hulle, M. The Effect of Mental Fatigue and Gender on Working Memory Performance during Repeated Practice by Young and Older Adults. Neural Plast. 2021, 2021, e6612805. [Google Scholar] [CrossRef] [PubMed]
- Welp, A.; Meier, L.L.; Manser, T. Emotional Exhaustion and Workload Predict Clinician-Rated and Objective Patient Safety. Front. Psychol. 2015, 5, 1573. [Google Scholar] [CrossRef] [Green Version]
- Boksem, M.A.S.; Meijman, T.F.; Lorist, M.M. Effects of Mental Fatigue on Attention: An ERP Study. Cogn. Brain Res. 2005, 25, 107–116. [Google Scholar] [CrossRef]
- DeLuca, J.; Genova, H.M.; Hillary, F.G.; Wylie, G. Neural Correlates of Cognitive Fatigue in Multiple Sclerosis Using Functional MRI. J. Neurol. Sci. 2008, 270, 28–39. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Xu, W.; Jiao, W.; Jiang, Y.; Gao, Z.; Zhang, J. The Impact of Mental Fatigue on Brain Activity: A Comparative Study Both in Resting State and Task State Using EEG. BMC Neurosci. 2020, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Shou, G.; Ding, L.; Dasari, D. Probing Neural Activations from Continuous EEG in a Real-World Task: Time-Frequency Independent Component Analysis. J. Neurosci. Methods 2012, 209, 22–34. [Google Scholar] [CrossRef]
- Dasari, D.; Shou, G.; Ding, L. ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task. Front. Neurosci. 2017, 11, 297. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lan, Z.; Khoo, H.H.G.; Li, K.H.H.; Sourina, O.; Mueller-Wittig, W. EEG-Based Evaluation of Mental Fatigue Using Machine Learning Algorithms. In Proceedings of the 2018 International Conference on Cyberworlds (CW), Singapore, 3–5 October 2018; pp. 276–279. [Google Scholar]
- Gao, Z.; Wang, X.; Yang, Y.; Mu, C.; Cai, Q.; Dang, W.; Zuo, S. EEG-Based Spatio–Temporal Convolutional Neural Network for Driver Fatigue Evaluation. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2755–2763. [Google Scholar] [CrossRef]
- Balam, V.P.; Sameer, V.U.; Chinara, S. Automated Classification System for Drowsiness Detection Using Convolutional Neural Network and Electroencephalogram. IET Intell. Transp. Syst. 2021, 15, 514–524. [Google Scholar] [CrossRef]
- Khessiba, S.; Blaiech, A.G.; Ben Khalifa, K.; Ben Abdallah, A.; Bedoui, M.H. Innovative Deep Learning Models for EEG-Based Vigilance Detection. Neural Comput. Appl. 2021, 33, 6921–6937. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, S. Visual Interpretability for Deep Learning: A Survey. Front. Inf. Technol. Electron. Eng. 2018, 19, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Kakkos, I.; Dimitrakopoulos, G.N.; Sun, Y.; Yuan, J.; Matsopoulos, G.K.; Bezerianos, A.; Sun, Y. EEG Fingerprints of Task-Independent Mental Workload Discrimination. IEEE J. Biomed. Health Inform. 2021, 25, 3824–3833. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, G.N.; Kakkos, I.; Thakor, N.V.; Bezerianos, A.; Sun, Y. A Mental Fatigue Index Based on Regression Using Mulitband EEG Features with Application in Simulated Driving. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2017, 3220–3223. [Google Scholar] [CrossRef]
- Miloulis, S.T.; Kakkos, I.; Karampasi, A.; Zorzos, I.; Ventouras, E.-C.; Matsopoulos, G.K.; Asvestas, P.; Kalatzis, I. Stimulus Effects on Subject-Specific BCI Classification Training Using Motor Imagery. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Morales, S.; Bowers, M.E. Time-Frequency Analysis Methods and Their Application in Developmental EEG Data. Dev. Cogn. Neurosci. 2022, 54, 101067. [Google Scholar] [CrossRef]
- Kiebel, S.; Kilner, J.; Friston, K. CHAPTER 16—Hierarchical Models for EEG and MEG. In Statistical Parametric Mapping; Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W., Eds.; Academic Press: London, UK, 2007; pp. 211–220. ISBN 978-0-12-372560-8. [Google Scholar]
- D’Avanzo, C.; Tarantino, V.; Bisiacchi, P.; Sparacino, G. A Wavelet Methodology for EEG Time-Frequency Analysis in a Time Discrimination Task. Int. J. Bioelectromagn. 2009, 11, 185–188. [Google Scholar]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2010, 2011, e156869. [Google Scholar] [CrossRef]
- Tsoneva, T.; Baldo, D.; Lema, V.; Garcia-Molina, G. EEG-Rhythm Dynamics during a 2-Back Working Memory Task and Performance. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 3828–3831. [Google Scholar]
- Sellat, Q.; Bisoy, S.K.; Priyadarshini, R. Chapter 10—Semantic Segmentation for Self-Driving Cars Using Deep Learning: A Survey. In Cognitive Big Data Intelligence with a Metaheuristic Approach; Mishra, S., Tripathy, H.K., Mallick, P.K., Sangaiah, A.K., Chae, G.-S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 211–238. ISBN 978-0-323-85117-6. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization 2014. Available online: https://arxiv.org/abs/1412.6980 (accessed on 18 December 2022).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Ma, Y.; Chen, B.; Li, R.; Wang, C.; Wang, J.; She, Q.; Luo, Z.; Zhang, Y. Driving Fatigue Detection from EEG Using a Modified PCANet Method. Comput. Intell. Neurosci. 2019, 2019, e4721863. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Nice, France, 2017; Volume 30. [Google Scholar]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features Through Propagating Activation Differences. In Proceedings of the 34th International Conference on Machine Learning, PMLR, Sydney, Australia, 17 July 2017; pp. 3145–3153. [Google Scholar]
- Roach, B.J.; Mathalon, D.H. Event-Related EEG Time-Frequency Analysis: An Overview of Measures and An Analysis of Early Gamma Band Phase Locking in Schizophrenia. Schizophr. Bull. 2008, 34, 907–926. [Google Scholar] [CrossRef] [Green Version]
- Venkata Phanikrishna, B.; Jaya Prakash, A.; Suchismitha, C. Deep Review of Machine Learning Techniques on Detection of Drowsiness Using EEG Signal. IETE J. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Scheurer, S.; Tedesco, S.; O’Flynn, B.; Brown, K.N. Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance. Sensors 2020, 20, 3647. [Google Scholar] [CrossRef] [PubMed]
- Abidi, A.; Ben Khalifa, K.; Ben Cheikh, R.; Valderrama Sakuyama, C.A.; Bedoui, M.H. Automatic Detection of Drowsiness in EEG Records Based on Machine Learning Approaches. Neural Process Lett. 2022, 54, 5225–5249. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Wang, H.; Sgarbas, K.; Thakor, N.; Bezerianos, A.; Sun, Y. Functional Connectivity Analysis of Mental Fatigue Reveals Different Network Topological Alterations Between Driving and Vigilance Tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.-M.; Hogervorst, M.A.; van Erp, J.B.F.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating Workload Using EEG Spectral Power and ERPs in the N-Back Task. J. Neural Eng. 2012, 9, 045008. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring Neurophysiological Signals in Aircraft Pilots and Car Drivers for the Assessment of Mental Workload, Fatigue and Drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef]
- Crespo-Garcia, M.; Pinal, D.; Cantero, J.L.; Díaz, F.; Zurrón, M.; Atienza, M. Working Memory Processes Are Mediated by Local and Long-Range Synchronization of Alpha Oscillations. J. Cogn. Neurosci. 2013, 25, 1343–1357. [Google Scholar] [CrossRef]
- Fukuda, K.; Mance, I.; Vogel, E.K. α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory. J. Neurosci. 2015, 35, 14009–14016. [Google Scholar] [CrossRef] [Green Version]
- Krause, C.M.; Pesonen, M.; Hämäläinen, H. Brain Oscillatory 4-30 Hz Electroencephalogram Responses in Adolescents during a Visual Memory Task. Neuroreport 2010, 21, 767–771. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Lim, J.; deSouza, J.J.; Bezerianos, A.; Sun, Y. Task-Independent Mental Workload Classification Based Upon Common Multiband EEG Cortical Connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1940–1949. [Google Scholar] [CrossRef] [PubMed]
- Chiew, K.S.; Braver, T.S. Context Processing and Cognitive Control: From Gating Models to Dual Mechanisms. In The Wiley Handbook of Cognitive Control; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 143–166. ISBN 978-1-118-92054-1. [Google Scholar]
- Ardestani, A.; Shen, W.; Darvas, F.; Toga, A.W.; Fuster, J.M. Modulation of Frontoparietal Neurovascular Dynamics in Working Memory. J. Cogn. Neurosci. 2015, 28, 379–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef] [PubMed]
Precision | Recall | F-Score | Support (No. of Samples) | |
---|---|---|---|---|
Fatigued | 98% | 97% | 97% | 124 |
Rested | 97% | 97% | 97% | 117 |
Overall Accuracy | - | - | 97% | 241 |
AI Model | Authors | Training Time Required | Prediction Time |
---|---|---|---|
UNET(CNN) + LSTM | [12] | 281 min | 25 ms |
Dual CNN | [11] | 112 min | 12 ms |
PCANet + SVM | [26] | 221 min | 45 ms |
This study (TF + CNN) | - | 44 min | 4 ms |
AI Model | Authors | Dataset (Training Strategy) | Classification Accuracy |
---|---|---|---|
UNET(CNN) + LSTM | [12] | 9 subjects with 1 channel, 4 s segments (Subject-specific) | 83% |
SVM | [32] | 8 subjects with 19 channels, 10 s segments (Combined-subject) | 89% |
Dual CNN | [11] | 22 subjects with 1 channel, 1 s segments (Combined-subject) | 93% |
PCANet + SVM | [26] | 6 subjects with 32 channels, 4 s segments (Subject-specific) | 96% |
This study (TF + CNN) | - | 22 subjects with 64 channels, 3 s segments (Combined-subject) | 97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorzos, I.; Kakkos, I.; Miloulis, S.T.; Anastasiou, A.; Ventouras, E.M.; Matsopoulos, G.K. Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue. Appl. Sci. 2023, 13, 1512. https://doi.org/10.3390/app13031512
Zorzos I, Kakkos I, Miloulis ST, Anastasiou A, Ventouras EM, Matsopoulos GK. Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue. Applied Sciences. 2023; 13(3):1512. https://doi.org/10.3390/app13031512
Chicago/Turabian StyleZorzos, Ioannis, Ioannis Kakkos, Stavros T. Miloulis, Athanasios Anastasiou, Errikos M. Ventouras, and George K. Matsopoulos. 2023. "Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue" Applied Sciences 13, no. 3: 1512. https://doi.org/10.3390/app13031512
APA StyleZorzos, I., Kakkos, I., Miloulis, S. T., Anastasiou, A., Ventouras, E. M., & Matsopoulos, G. K. (2023). Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue. Applied Sciences, 13(3), 1512. https://doi.org/10.3390/app13031512