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Abstract: The detection of mental fatigue is an important issue in the nascent field of neuroergonomics.
Although machine learning approaches and especially deep learning designs have constantly demon-
strated their efficiency to automatically detect critical features from raw data, the computational
resources for training and predictions are usually very demanding. In this work, we propose a
shallow convolutional neural network, with three convolutional layers, for fatigue detection using
electroencephalogram (EEG) data that can alleviate the computational burden and provide fast men-
tal fatigue detection. As such, a deep learning model was created utilizing time-frequency domain
features, extracted with Morlet wavelet analysis. These features, combined with the higher-level
characteristics learnt by the model, resulted in a resilient solution, able to attain very high prediction
accuracy (97%), while reducing training time and computing costs. Moreover, by incorporating
a subsequent SHAP values analysis on the characteristics that contributed in the model creation,
indications of low frequency (theta and alpha band) brain wave characteristics were indicated as
prominent mental fatigue detectors.
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1. Introduction

Sleep deprivation comprises a state provoked by either a complete lack of sleep or a
suboptimal duration of rest. Evidence-based studies have demonstrated a significant impact
of sleep deprivation on information processing and overall cognitive performance [1], with
its effects varying based on the cognitive requirements and the brain areas involved.
Under this state, mental fatigue emerges as a key outcome, resulting in concentration
difficulties and low vigilance. Consequences are particularly evident in the context of
working memory, which by definition entails rapid information manipulation and task
execution [2]. As such, mental fatigue is associated with compromised performance from
a working memory perspective, which often proves crucial in specialized settings, such
as healthcare institutions. Specifically, hospital staff typically undergo prolonged periods
of demanding cognitive activity during their shifts, presenting increased probability of
burnout, which in turn poses a potential risk on patient safety [3]. In such circumstances,
prompt identification of mental fatigue levels that may induce declined performance and
related errors in hospital settings is essential.

In order to assess mental fatigue states, several electrophysiological recording modali-
ties have been utilized, providing indications of the complex brain interactions and there-
fore insights of the cognitive mechanisms governing cognitive exhaustion [4,5]. In this
view, electroencephalography (EEG) has been showcased as an invaluable apparatus due
to its ability to detect brain activity (non-invasively) in the form of neuronal oscillations,
enabling researchers to quantify the impact on cognitive functions under various levels
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of mental load [6]. The main classification problem lies on the state of the individual
being mentally rested (herein referred to as Rested class) or mentally fatigued (Fatigued
class). Most frequently, signal processing techniques are employed in order to develop
mental fatigue detection algorithms. These techniques involve the use of mathematical
algorithms to analyze and extract relevant information from EEG signals, without the use
of data-driven development. For instance, several studies include wavelet transformation
and independent component analysis to analyze EEG data and identify changes in brain
activity that are indicative of mental fatigue [7,8]. However, these approaches require
manual intervention and refactoring that might deter a fully automated detection of mental
fatigue. Another widely used approach is machine learning, which involves the use of
statistical models to analyze and interpret (EEG) data in order to identify patterns and
features (e.g., power spectrum) that are indicative of mental fatigue [9]. However, such
techniques require manual feature extraction in order to perform optimally, while the
extracted features are usually subject dependent [9] and thus not ideal for real-world and
real-time paradigms.

On this premise, artificial intelligence (AI) has become a powerful tool, with deep
learning (DL) designs delivering automatic feature detection and extraction, unleashing
outstanding advances in classification, segmentation, and prediction tasks. As such, many
in fatigue detection studies have utilized DL algorithms due to their high classification
performance (compared to conventional machine learning methods), especially when
utilizing solely EEG signals (disregarding other modalities, such as electrooculograms or
facial video data) [10,11]. Furthermore, in pursuit of metrics with high discriminative power,
even more complex architectures have been proposed in literature, with convolutional
layers and recursive neural networks achieving promising results, however at the cost
of increasing complexity [12]. In this regard, most of these implementations use multi-
layered deep convolutional neural networks (CNNs) that require high-end hardware and
a substantial amount of time for both training and prediction phases. Although, such
configurations usually attain high classification accuracy, the overall computational cost
deems them inapplicable for real-world application (e.g., brain-computer interfaces), since
minimal computational resources and prediction time are essential in order to achieve
real-time functionality.

Another important factor that presents a limitation in the current DL architectures
is their explainability. DL entails the need for enormous, multi-layered networks that are
hard to train and even harder to explain. The models are perceived as black boxes with
little understanding of the actual system usability [13]. Explainability is crucial, since it
increases the trustworthiness of the system. Understanding the reason behind a model’s
predictions can provide confidence in the model’s results, while providing indications of
the flow of reasoning behind the results produced.

Taking the above into consideration, a DL architecture was employed in this study,
which utilized EEG data from a working memory task triggering visual memory processes.
The overall procedures included two recordings (before and after on-call shifts) of medical
and nursing staff eliciting high mental fatigue due to the influence of sleep deprivation.
In this regard, a fairly shallow neural network architecture (with three layers of cascading
CNNs and a fully connected layer) was applied, based on non-invasive EEG recordings
and an appropriate data (pre-)analysis. Our results indicate the efficiency of the proposed
methodology towards both classification performance and computational cost. In detail, our
workflow achieved an accuracy of 97% (97% F-score) within a particularly cost-effective
setup, bearing notable implementation prospects for real-time applications. Moreover,
the application of an explainability design was able to provide indication of the input
brain activity features utilized by the DL algorithm to assess mental fatigue. The main
contributions of this study are: (a) to effectively classify fatigue states with high overall
accuracy while employing an explainable and trustworthy AI architecture; (b) to emphasize
the importance of hand-engineered features in the performance of deep learning models.
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2. Materials and Methods
2.1. Participants

This study included 22 healthy participants (9 female, mean age 27.3 ± 4.1) recruited
from the 401 General Military Hospital of Athens. All participants were doctors and
staff members, reporting normal or corrected-to-normal vision. Before the experiment,
all participants were prescreened to ensure no sleep disorder, no history of any mental
disease or ADHD and no long-term medication intake. The experiment was approved
by the Institution’s Review Board in accordance with the Declaration of Helsinki, while
written informed consent was obtained from all subjects.

2.2. Experimental Design

The participants underwent a working memory task twice, before on-call shifts (up
to 28 h with little or no sleep—Rested) and after work shift ended (Fatigued). As such, to
assess the influence of mental fatigue on the working memory capacity, a visual n-back task
was employed under an N = 2 design [14]. During this task, the participants were asked to
remember and compare the image displayed in 2 trials prior to the current visual stimulus.
In each trial, an image would appear in one of the four corners of the screen, with the
participants indicating among 1 of the 4 possible conditions by pressing the corresponding
button. Each condition required comparisons with regards to the image content and location
as follows: (a) same image and same location; (b) same image (different location); (c) same
location (different image); and (d) no similarities (different image, different location). The
experiment consisted of 72 tests (4 conditions balanced) and lasted approximately 5 min.
The visual stimuli were displayed for 3.5 s, interposing a fixed cross for 1 s. Practice trials
were conducted before the EEG recordings to ensure individuals’ comprehension regarding
the execution of the task.

2.3. Data Acquisition and Preprocessing

EEG data recordings were performed using a 64-channel electrode cap (Biosemi,
Activetwo System, Amsterdam, Netherlands), according to the standard 10–20 positioning
system at a 512 Hz sampling rate. Bipolar electrooculogram signals were recorded from
electrodes placed at the outer canthi, as well as above and below the eyes. The raw EEG
data were down sampled to 256 Hz, band-pass filtered from 1 to 40 Hz, and re-referenced to
the average of the all electrodes. Additional artifact correction was performed by utilizing
Independent Component Analysis (ICA) and rejecting the components highly correlated
with the electrooculogram signals [15]. Due to significant artifact contamination, data from
2 participants were excluded, resulting in 20 subjects for further analysis. Signals were then
segmented into trials and adjusted relative to a 100-ms pre-stimulus baseline. An additional
removal of the first 0.5 sec stimulus onset data was employed to alleviate influences due to
stimuli effects [16], resulting in 18 (per condition) 3-sec trial-based epochs. Electrode Iz was
removed from analysis for symmetry reasons, leaving 63 channels for subsequent analysis.
In order to negate the contribution of cognitive processing irrelevant to working memory,
only correct answers were included in the following analysis, resulting in 2401 samples:
1234 samples of Fatigued data and 1167 of Rested data. Preprocessing was implemented in
Matlab 2022b (Mathworks Inc., Natick, MA, USA) using the EEGLAB tool [17].

2.4. Feature Extraction

Despite the trigger-related nature of the data, identification of the mental fatigue
states, while omitting the visual stimuli information, was decided (thus the 0.5 sec post-
trigger time frame was removed, as mentioned in the previous section). However, such
a configuration creates a non-phase-locked dataset. This could be a significant hindrance
in time-locked analysis, since the important temporal information of the signal would be
ignored and lost. On the contrary, time-frequency (TFR) analysis can harness the temporal
and spectral resolution for the non-phase-locked trials [18]. Therefore, TFR analysis was
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implemented as the base analysis prior to artificial intelligence learning to address potential
data inconsistencies that could prove detrimental for the predictive model performance.

Specifically, the preprocessed data were analyzed by employing complex Morlet
wavelet [19] creating the final feature dataset. The utilization of Morlet wavelets was done
due to their prominence in time-frequency analysis, as they provide equal variance in time
and in frequency [20]. With this approach, the raw power values for each frequency bin
were computed with a varied time window (that rely on frequency), using a Gaussian taper
with a specified width. The width of the Morlet taper was selected as a hyperparameter
with a value of 4, resulting in a temporal resolution of 13 time bins. This analysis outputs a
power spectral-temporal activation map to be used as input for the subsequent DL model.
As such, a 3D TFR matrix was created (per subject and trial) incorporating the Morlet power
features, with dimensions [C×F×T], where C is the number of channels, F is the frequency
bins, and T is the time bins. The number of channels in the proposed configuration is
63, with 40 frequency bins (from 1–40 Hz, with 1 Hz frequency windows) and 13 time
bins (from 0.5 s to 3.5 s with a time window of 0.25 s). Morlet wavelet calculations were
performed using the FieldTrip Toolbox [21].

2.5. Artificial Intelligence Modeling
2.5.1. Deep Learning Model

The AI architecture consisted of three 2-dimensional convolutional layers in a se-
quential order (Figure 1). In the first layer, a 3 × 3 kernel channel-wise (63 channels)
convolution is conducted, with 32 output filters (each filter is producing one output matrix;
thus, resulting in 32 first layer matrices). No padding was performed and a standard stride
of 1 was used. The kernel size was specifically chosen to incorporate a 3 Hz frequency
band and 0.75 sec time band features. The 3 Hz frequency window was selected as it is
a wide bandwidth that can correlate and therefore be explained (as it is a good divisor)
with the most commonly used EEG bands (delta, theta, alpha, beta, and gamma). As
far as the time window duration is concerned, a time window of 750 ms was selected
based on similar experimental paradigms (for 2-back working memory tasks) that present
the mean reaction time of approximately 700 ms [22]. The second layer is comprised of
16 output filters with a kernel size of 3 × 3, also computing channel-wise convolution,
capturing higher-level features of the 32 first-layer input matrices. The final convolution
layer consists of 4 output filters with a kernel size of 4 × 4. Usually in DL architectures, a
pooling layer is used after the convolutional layers to down-sample the feature space [23].
However, the reduction of the dimension of the outputs was not required in the proposed
approach, and thus no pooling layer was utilized. Since the scope of this study includes
the application of AI methods with minimal computational resources, the hyperparameters
of the created shallow network were selected for fast execution time per time step during
training. Thereafter, the selected number of layers was 3, taking into account the medium
size of the dataset. Furthermore, the filter sizes follow a logarithmic pattern, reducing the
number of features after each layer to half, thus decreasing the training and the inference
time. The optimizer, the learning rate, the batch size, and the activation function were
selected based on common DL practices and testing with a variety of values. The optimizer
that was selected was Adam [24], the initial learning rate was selected to be 0.001, the batch
size was 32 samples, and the sigmoid function was chosen as the activation function.

Finally, a fully connected (FC) layer with 792 input nodes and 2 output nodes for
each of the classes was utilized. In order to introduce non-linearity to our model, a
bounded logistic function (sigmoid function) was employed as an activation function for
the output probabilities. Following each convolutional layer, a batch normalization layer
was utilized to increase the stability and robustness of the AI network during the training
processes. Furthermore, a dropout configuration with a probability of a zero-element set to
0.25 was used to reduce overfitting and handle uncertainty. Dropout is a regularization
technique that can reduce uncertainty in deep learning models by randomly dropping out
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neurons during training. All algorithms were implemented with custom code in the Python
programming language and the PyTorch, version 1.13 [25] deep learning framework.
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2.5.2. Deep Learning Training

The computing resources employed for training the aforementioned model consist
of an Intel (R) Core (TM) i7-9700 CPU with 3.00 GHz and 16 GB of 2667 MHz RAM on a
Windows 11 Pro OS Version 22H2 (Microsoft, Redmond, Washington, U.S.). No CUDA
compatible GPU was utilized, so the AI training was conducted completely on the CPU. The
created feature dataset consists of 2401 trials: 1234 samples for the Fatigued class and 1167
for the Rested class. Even though all subjects completed the same number of tasks for each
state, only correct responses were considered for the creation of the dataset, introducing a
minor class imbalance. However, the differences were negligible and, henceforth, it cannot
be suggested that they contributed to the corresponding bias. To train the designed deep
learning model, a combined-subject training strategy was employed in order to exploit
features that provide generalized (subject independent) information on mental fatigue.
As such, all the observations of Fatigued and Rested data points of all the subjects were
combined and randomly partitioned into the three data subsets; i.e., the training, the
validation and the test subsets. In detail, the full dataset was split into a training subset
(containing 75% of the full dataset; 925 samples of Fatigued class and 875 of Rested class), a
validation set (containing 15% of the full dataset; 185 of Fatigued class and 175 of Rested)
and a test set (containing 10% of the full dataset; 124 of Fatigued class and 117 of Rested).
Assignment was performed randomly to avoid any selection bias among participants. The
neural network model was trained repeatedly using the training dataset for a specific
number of epochs. Each epoch (which is a hyperparameter of the training process) is a
complete pass of the entire training dataset from the learning algorithm. This is required for
a model until the learning process converges. Usually, the number of epochs is in hundreds
or thousands. However, our model converged in almost 150 epochs.
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3. Results
3.1. Performance

The overall AI model performance results are presented below (Table 1, Figure 2), as
measured with four standard machine learning metrics: accuracy, precision, recall and
F-score. As such, the attained classification accuracy was 97%, with an additional very
high F-score (reaching 97%), thus indicating that mental fatigue was identified effectively
(the confusion matrix of the AI model results is presented in Figure 3a). For the 150
epochs of our model, training was completed in 44 min. Figure 3b presents the validation
history in the form of validation accuracy over the course of epochs. Moreover, the
estimated processing time for the approximated prediction time of a single instance was
approximately 4 ms (following the suggested methodology and the computing resources
setup described above).

Table 1. The performance of the proposed model.

Precision Recall F-Score Support (No. of Samples)

Fatigued 98% 97% 97% 124
Rested 97% 97% 97% 117

Overall Accuracy - - 97% 241
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Figure 3. (a) Proposed model confusion matrix; (b) validation curve for 150 epochs (blue) and 300
epochs (magenta). Darker colors represent a smoother curve.

To evaluate whether the resulting performance could be further improved, an addi-
tional 300 epoch model was evaluated. However, despite the fact that in a separate training
session the overall accuracy increased to 97.6 (≈0.1% increase) the test dataset required
double the amount of training time in the same computational setup. As such, the extra
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time could be considered unnecessary since the validation accuracy reaches a plateau and
the model converges (Figure 3b).

In AI-applications, the computational cost is an important factor in order to balance the
performance and the time needed for the model solution. In this regard, the requirements
of the proposed model can be considered minimal, both in terms of computational power
and in the time required for training and evaluating the AI model. Specifically, as described
above, the model was trained in 44 min with no CUDA cores, while each consequent
prediction was performed in 4 ms. On this premise, to provide an indication of the
computational and the temporal efficiency of the proposed configuration, a thorough
comparison in the same computation settings was conducted. As such, various state-of-the
art AI models that examine mental fatigue classification were recreated and trained with
the same computational setup, with the algorithmic cost-efficiency evaluation including
the time required for training and testing (Table 2). Specifically, the recreated AI models
were fed with the same input data as the proposed approach and the duration of training
and prediction time were measured. The models included: (a) a dual convolutional neural
network (CNN) [11]; (b) a 1-dimensional u-net combined with a long short term memory
(LSTM) network [12]; and (c) a modified principal component analysis network (PCANet)
with a support vector machine (SVM) classifier [26].

Table 2. Algorithmic Cost-Efficiency Comparison.

AI Model Authors Training Time Required Prediction Time

UNET(CNN) + LSTM [12] 281 min 25 ms
Dual CNN [11] 112 min 12 ms

PCANet + SVM [26] 221 min 45 ms
This study (TF + CNN) - 44 min 4 ms

The input of each of these models was a modification of the dataset described in
Section 2.4 in order to comply with the parameters and designs provided by the studies’
authors. In detail the dual CNN and UNET(CNN) + LSTM models require single channel
time-series and, thus, a single channel time-series was provided. Similarly, the input for
the PCANet was a C × r matrix, where C is the number of channels and r is the number of
the PCA components of the reduced time-series data. The aforementioned AI designs were
recreated using PyTorch to minimize any implementation differences. Interestingly, even
though dual CNN and UNET(CNN) + LSTM require only a single channel as input, the
amount of time required for training is several times the amount required for the proposed
AI model.

Of note is that the additional information regarding the algorithmic performance
was excluded from the cost-efficiency evaluation, since the focus of this paper is to assess
the performance of fairly shallow neural network architectures based on appropriate
data handling, and it is not a comparison to existing algorithmic designs. However, the
performance of the additional AI models is included in Section 4, denoting their high
discriminative ability (as presented in their respective studies).

3.2. Explainability

One of the major issues concerning DL AI designs is their innate “black box” nature,
making it difficult to estimate the relationships between the input features, which provides
reasoning behind the results that are computed. In this view, the colossal number of
layers that are contained in the majority of DL architectures hinders the importance of
each feature that is internally computed (as each layer transforms the input data). As
a result, the interpretability and, therefore, the trustworthiness of such models can be
compromised. Shallow artificial networks alleviate these concerns, since the relatively
small number of layers allows the decisions incorporated in each step of the model to be
estimated and thus explained. In this regard, explainability tools, such as Shapley additive
explanations (SHAP), values provide a visualization of the internal model processes [27],
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highlighting the importance of each region or feature. In this study, SHAP values estimation
was performed by utilizing an enhanced method of DeepLift (deep learning important
features) [28] with the DeepExplainer Tool. DeepExplainer uses a sampling technique to
approximate the Shapley values for a DL model. Specifically, a large number of random
samples is generated from the model’s input space and using the resulting samples to
estimate the Shapley values. In this study, 100 samples were utilized to generate the SHAP
values. For each individual input/observation, the SHAP values are computed for each of
the output classes, with the positive values indicating the contribution in model selection
of the correspondent class, while the negative values denote the features inhibitory nature.
In this study, SHAP values have been employed to identify what the model relies on
(increasing the probability that the input feature map is the predicted class). An example
regarding the positive and negative SHAP values observation is presented in Figure 4.
Interestingly, in the majority of SHAP values computation, the range between 5–15 Hz is
contributing positively in predicting the Fatigued class. In a similar way, activation in the
range of 3–7 Hz on time-frequency map suggests an inhibitory factor for the Fatigued class
and positive values for the Rested class. The importance of visually interpreting SHAP
values comes along with visually inspecting TFR power maps. Visually interpreting TFR
power maps is an invaluable tool for neuroscientists, facilitating the reasoning behind the
AI model predictions and shedding light to the understanding of brain activity, EEG states,
conditions, and mental illness [29].
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4. Discussion

In this study, a fairly shallow neural network to discriminate between the fatigued
and rested state was utilized and tested, in an EEG working memory experiment. The
proposed architecture was able to achieve high classification accuracy (97%), within a
computationally inexpensive framework, emphasizing the utility of the data analysis
required for real-time/real-world applications.
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In many cases, such as computer vision, hidden features extracted by DL architectures
were more efficient in certain tasks than the features extracted manually, which explains
why DL approaches outperform the ones with machine learning. However, this does
not hold in all tasks. Although, in some cases the utilization of raw EEG data with
CNNs attains very high accuracy [11], supplying the network with analyzed data for EEG
signal classification proves to be the optimal pathway. On the other hand, hand-crafted
features (such as those proposed in this study) are usually employed with classical machine
learning techniques, since the automatic feature extraction (the main advantage of deep
learning architectures) is not required. This being the case, computation of higher level-
features presents an inherent advantage, since the proposed model outperforms classical
ML techniques in regards to the F-score [30].

Another important factor in machine learning approaches is the training strategies
applied for the AI model creation. Typically, a subject-specific approach has been utilized
by the majority of similar studies [12,26]. The subject-specific strategy includes the training
and testing sets to be split for each subject separately, creating N results (where N is the
number of subjects). The final model accuracy is calculated by the averaged result of all the
subjects. However, although this subject-specific strategy usually yields high performance
(since AI models are capable of capturing personalized features), this approach is not ideal
for identifying generalized features that are applicable, albeit subject variations. In this
study, a high universal (subject-independent) performance and a combined-subject training
strategy was applied. As such, by including samples from all the subjects into our training
dataset, the potential sampling bias in the data is minimized, making the AI model training
more robust and less error prone [31].

To illustrate the prominence of the hand-crafted feature DL design, an overall com-
parison between the state-of-the-art AI methods used in the literature and the proposed
methodology is presented in Table 3. Of note is that the comparison includes studies in
which different datasets and analysis are applied in each method. As such, each of the
models presented tackled different problems, domains, and feature spaces. It should be
emphasized that each model’s performance not only based on methodological architecture
but also on data availability, quality, and variability. However, the overall results imply
that the proposed framework provides high results in mental fatigue discrimination (under
a generalized training procedure), comparable to those presented in literature.

Table 3. Mental fatigue classification methods comparison.

AI Model Authors Dataset (Training Strategy) Classification Accuracy

UNET(CNN) + LSTM [12] 9 subjects with 1 channel, 4 s segments (Subject-specific) 83%
SVM [32] 8 subjects with 19 channels, 10 s segments (Combined-subject) 89%

Dual CNN [11] 22 subjects with 1 channel, 1 s segments (Combined-subject) 93%
PCANet + SVM [26] 6 subjects with 32 channels, 4 s segments (Subject-specific) 96%

This study (TF + CNN) - 22 subjects with 64 channels, 3 s segments (Combined-subject) 97%

Equally important is the computational cost of the DL model employed. In this
work, no CUDA compatible GPU was utilized, with the AI model being developed on the
CPU. This is an important factor, since for a real-time apparatus, the presence of CUDA
compatible GPUs is scarce. On this note, it is safe to infer that the AI model would perform
equally well on an advanced microprocessor without the need of GPU cores. In detail,
the TFR analysis for each subject was completed in under 2 ms, while the prediction time
of a single instance was approximately 4 ms, making the system suitable for real-time
classifications and appropriate for EDGE-AI systems (where training and inference is
performed with minimal computational power) [33]. On the contrary, applications of
different DL architectures (as presented in Table 2) or input calculation processes leads
to increased (compared to the proposed framework) computational costs. For instance,
the computation of PCA for the input requires more than 10× the time compared to TFR,
exceeding 20 ms for each of the sample [26]. Based on the above, the presented approach
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could be considered ideal for real-time fatigue detection with possible extensions to brain
computer interfaces (BCI).

In addition to the performance of the proposed framework, the features that con-
tributed most to the formation of AI model were inspected. In this regard, the calculated
SHAP positive values highlight the TFR power in the 5–15 Hz bins as a rigorous indicator
of mental fatigue development. In fact, previous similar studies have suggested that in-
creased task demands in working memory paradigms can be reflected as theta (4–7 Hz)
and alpha (8–12 Hz) neural oscillations [34,35]. Specifically, alterations in theta power
have been consistently related to different states of fatigue level, and especially in memory
manipulation [14,36]. In a similar way, visual attention and working memory aspects sys-
tematically report alpha activity alterations [37,38]. Although the fatigue state was elicited
as a result of sleep deprivation rather that the experimental procedure, the information
maintenance and item retrieval requirements of the n-back task involves working memory
capacity and high attentional demands [35]. This is also reported in beta band (13–30 Hz)
activity [39,40], although the very small overlap of our findings with the beta frequency
range cannot provide a conclusive assumption. Regarding the SHAP negative values,
the inhibitory elements indicated in the 3–7 Hz time-frequency map suggest theta wave
memory load interactions, while implying task-related reactive control (as reactive control
is less cognitive demanding than proactive control) [41,42].

Despite the fact that the proposed framework displayed an overall high performance,
interpretation of the methods applied should be treated with caution. The main concern
is that the dataset under study incorporated a small number of individual observations
(20 subjects), which is deemed a moderate sample for DL designs. Nevertheless, it is
similar (or larger) than most relevant similar studies [43]. Another possible limitation of
this work is the definition of the Fatigued state and the interpretation of it as the ground
truth. However, since the data comes from on-call doctors and nursing staff, it is safe to
infer that mental fatigue is present after the shift. Hence, it can be assumed that there is no
subjectivity bias in the current research.

Considering the results of this study, in the future we intent to expand the overall
methodologies, both in terms of the experimental and methodological design. As such, the
development of deep learning approaches for mental fatigue detection using EEG signals
could be enhanced by including larger datasets (containing a variety of population and
settings, subsequently increasing diversity/reducing population biases), cognitive load
measures and behavioral observations, and optimization in the DL architecture. These,
paired with explainability methods, are likely to yield valuable insights and improvements
in the ability to detect and comprehensively investigate the underlying neural substrates
that govern mental fatigue.

5. Conclusions

The use of deep learning approaches for mental fatigue detection is an active and
promising area of research with the potential to have significant impacts on the detection
and management of mental fatigue in various settings. In this paper, a shallow neural
network architecture with EEG-derived hand-crafted features to discriminate between
fatigued (sleep deprived) and rested states in a working memory task was created. Our
model provided high overall results (97% classification accuracy), using computationally
inexpensive and fast-to-train network properties. Furthermore, the data-driven SHAP
analysis illustrated the distinct aspects of TFR Morlet power values between the two
classes in 5–15 Hz and 3–7 Hz frequency ranges. Our results indicate that appropriate data
(pre-)analysis with a carefully executed AI model design can achieve high performance,
providing a progressive step forward towards the real-time mental fatigue detection.

The small number of individual (20 subjects) could be a factor towards population bias,
while the lack of behavioral observations could lead to a small number of misclassifications,
however we intend to expand the experimental and methodological aspects described
in this paper to address these limitations, with the intention of further increasing mental
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fatigue detection accuracy (with minimal computational costs) and shedding light on the
mental fatigue cognitive mechanisms.
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