Comparative Studies on the Extraction of Lineaments and Its Variability Based on an Improved Line Segment Tracking Method—Taking the Gaosong Ore Field in the Gejiu Gejiu Tin Ore Deposit as an Example
Abstract
:1. Introduction
1.1. Research Background, Research Position, Research Purpose, and Method
1.2. Location and Geological Background of the Study Area
2. Materials and Methods
2.1. Mine Image Processing
2.2. Lineament Extractions
2.2.1. Traditional Remote Sensing Image Lineament Extraction
2.2.2. Improved Line Segment Tracking Method for Lineament Extraction and
Automatic Connection
Continuous Direction Judgment of the Line Element
Line Element Determination
2.2.3. Line Element Connection
2.2.4. Lineaments Extraction Result Processing
2.2.5. Comparative Analysis of Lineament Variability
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yong, Y.; Aiping, Y. Quantitative analysis of high-resolution remote sensing linear structure in Gaolong gold mine area. Guangxi Sci. 2005, 12, 4. [Google Scholar]
- Zuohai, F.; Jincheng, L.; Guilin, Z.; Xibin, H.; Xiaofeng, L. Fractal characteristics of remote sensing linear structure in Pinggui area and its geological significance. Acta Geosci. Sin. 2002, 23, 563–566. [Google Scholar]
- Runsheng, W. Quantitative analysis of remote sensing linear body field. Remote Sens. Land Resour. 1992, 49–54. [Google Scholar]
- Yanjun, L. Geological significance of linear structure in satellite images and its relationship with earthquakes. Geogr. Sci. 1983, 1, 58–64. [Google Scholar]
- Shuliang, W. Linear structure density analysis of TM remote sensing image of Liyang volcanic basin. Geol. J. 2000, 24, 161–164. [Google Scholar]
- Shaojie, Z.; Jianping, Q.; Hongyi, C. Application of fractal statistics of remote sensing linear structure and alteration information extraction in gold-lead-zinc-tin polymetallic metallogenic prediction in eastern Guangxi. Geotecton. Metallog. 2011, 35, 8. [Google Scholar]
- Yuan, Z.; Jianping, Q.; Biaowu, X.; Xiaoxing, Z. The application of remote sensing alteration and linear structure information extraction in the area of Ali Zhailang mining area in Tibet. Mod. Geol. 2013, 27, 99–107. [Google Scholar]
- Gengming, W.; Lihua, W.; Yu, X. Interpretation and analysis of remote sensing geological structure in Guangzhou based on SPOT data. Mar. Geol. Dyn. 2010, 26, 21–24. [Google Scholar]
- Duoyi, W.; Meizhou, D.; Chunhan, T. Remote Sensing Geological Interpretation and Structural Analysis of Shitingjiang Area in Western Sichuan. J. Chengdu Univ. Technol. 2006, 33, 390–393. [Google Scholar]
- Solomon, S.; Ghebreab, W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J. Afr. Earth Sci. 2006, 46, 371–378. [Google Scholar] [CrossRef]
- Chaabouni, R.; Bouaziz, S.; Peresson, H.; Wolfgang, J. Lineament analysis of South Jenein Area (Southern Tunisia) using remote sensing data and geographic information system. Egypt. J. Remote Sens. Space Sci. 2012, 15, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Uda, R.O.; Hart, P.E. Use of the Hough Transform to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar]
- Koike, K.; Nagano, S.; Kawaba, K. Construction and analysis of interpreted fracture planes through combination of satellite-image derived lineaments and digital elevation model data. Comput. Geosci. 1998, 24, 573–583. [Google Scholar] [CrossRef]
- Raghavan, V.; Wadatsumi, K.; Masumoto, S. Automatic extraction of lineament information from satellite images using digital elevation data. Nonrenewable Resour. 1993, 2, 148–155. [Google Scholar] [CrossRef]
- Batayneh, A.; Ghrefat, H.; Diabat, A. Lineament Characterization and Their Tectonic Significance Using Gravity Data and Field Studies in the AI-Jufr Area, Southeastern Jordan Plateau. J. Earth Sci. 2012, 23, 873–880. [Google Scholar] [CrossRef]
- Koike, K.; Nagano, S.; Ohmi, M. Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Comput. Geosci. 1995, 21, 1091–1104. [Google Scholar] [CrossRef]
- Chunzhong, N.; Shitao, Z.; Chunxue, L.; Yan, Y.; Li, Y. Lineament Length and Density Analyses Based on the Segment Tracing Algorithm: A Case Study of the Gaosong Field in Gejiu Tin Mine, China. Math. Probl. Eng. 2016, 2016, 5392453. [Google Scholar]
- Xiaojun, W.; Xumin, L.; Yong, G. Image edge detection algorithm based on improved Canny operator. Comput. Eng. 2012, 38, 196–198. [Google Scholar]
- Hui, L.; Changsheng, Z.; Ning, S. Edge detection and evaluation based on Canny operator. J. Heilongjiang Inst. Eng. 2003, 17, 5. [Google Scholar]
- Zhi, W.; Sai-Xian, H. An Adaptive Edge-detection Method Based on Canny Algorithm. J. Image Graph. 2004, 9, 957–962. [Google Scholar]
- Zhang, D.D.; Zhao, S. An Improved Edge Detection Algorithm Based on Canny Operator. Appl. Mech. Mater. 2013, 347–350, 3541–3545. [Google Scholar] [CrossRef]
- Yongqiu, Z.; Renzhong, W.; Shupei, Y.; Jinming, Y. Tin-copper polymetallic deposit, Gejiu, Yunnan. Acta Mineral. Sin. 1996, 34, 565–566. [Google Scholar]
- Chong-wen, Y.; Yao-song, J. Kinetic mechanism of primary metal zonation of cassiterite-sulfide deposits in Gejiu mining area, Yunnan. Geol. J. 1990, 64, 226–237. [Google Scholar]
- Ming-Guo, D.; Wen-Chang, L.; De-Xian, Q. Application of Kriging method to reserve calculation of No. 10-9 Lutangba ore body in Gejiu mining area. Geol. Explor. 2006, 42, 67–70. [Google Scholar]
- Shaoyou, S. Study on multi-stage activity characteristics of fault structure in Gaosong ore field of Gejiu tin deposit. Mineral. J. 2004, 24, 5. [Google Scholar]
- Shucheng, T. Study on Metallogenic Series of Gejiu Tin-Polymetallic Deposit; Kunming University of Science and Technology: Kunming, China, 2004. [Google Scholar]
- Tingting, S.; Xiuli, F.; Yu, C.; Yongming, W.; Qinjun, W.; Xianfeng, C. Remote Sensing Inversion of Soil Zinc Pollution in Gejiu Mining Area, Yunnan. Remote Sens. Technol. Appl. 2018, 33, 88–95. [Google Scholar]
- Jiangnan, Z.; Shouyu, C.; Pengda, Z. Geochemical Characteristics and Significance of Rare Earth Elements in Tectonic Rocks of Gaosong Ore Field, Gejiu. J. Chin. Soc. Rare Earths 2011, 29, 9. [Google Scholar]
- Yu, C.; Jiang, Y. The Dynamic Mechanisms Of Primary Metal-Zoning Of Cassiterite-Sulfide Deposits In The Gejiu Ore District Yunnan Province. Acta Geol. Sin. 1990, 3, 226–237. [Google Scholar]
- Liu, C.X.; Qin, D.X.; Dang, Y.T.; Tan, S.C. Synthesis Information Based Mineral Resource Prediction Of Gaosong Field In Gejiu Tin Deposit. Adv. Earth Sci. 2003, 18, 921–927. [Google Scholar]
- Jingwen, M. Tin ore field in Gejiu, Yunnan: Ore deposit model and discussion of some problems. Geol. J. 2008, 82, 1455–1467. [Google Scholar]
- Wenchang, L.; Pusheng, Z. Characteristics and metallogenic model of Pulang super-large porphyry copper deposit in Yunnan. J. Chengdu Univ. Technol. Nat. Sci. Ed. 2007, 34, 11. [Google Scholar]
- Wenzhong, S.; Changqing, Z.; Yu, W. Review and prospect of road feature extraction from remote sensing images. Acta Geod. Cartogr. Sin. 2001, 30, 6. [Google Scholar]
- Deren, L. Change detection using remote sensing images. J. Wuhan Univ. Inf. Sci. Ed. 2003, S1, 6. [Google Scholar]
- Chuang, L.; Chenghui, G. Characteristics and Application of Remote Sensing Data of Medium Resolution Imaging Spectroradiometer (MODIS) in Earth Observation System (EOS). Remote Sens. Inf. 2000, 4, 45–48. [Google Scholar]
- Xuming, Z.; Binshi, X.; Shiyun, D. Adaptive Median Filtering for Image Processing. J. Comput. Aided Des. Graph. 2005, 17, 5. [Google Scholar]
- Xiaokai, W.; Feng, L. Improved Adaptive Median Filtering. Comput. Eng. Appl. 2010, 3, 3. [Google Scholar]
- Lei, X.; Kun, H.; Jiliu, Z. Image denoising based on improved adaptive median filtering. Laser J. 2009, 2, 3. [Google Scholar]
- Chunxue, L.; Chunzhong, N.; Yongfeng, Y. Automatic extraction of linear structure based on remote sensing image. Remote Sens. Technol. Appl. 2014, 2, 5. [Google Scholar]
- Chongwen, Y.; Yaosong, J. The Dynamic Mechanisms for the Formation of Primary Metal Zoning of Cassiterite-Sulfide Deposits in the Gejiu Metallogenic Province, Yunnan. Acta Geol. Sin. Engl. Ed. 1991, 4, 51–63. [Google Scholar] [CrossRef]
- Chuanjie, P.; Dexian, Q.; Chunxue, L. Study on spatial enrichment law of gold element in jinchang gold deposit, mojiang. Geotecton. Miner. 2004, 28, 388–396. [Google Scholar]
- Watkins, H.; Bond, C.E.; Healy, D.; Butler, R.W.H. Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop. J. Struct. Geol. 2015, 72, 67–82. [Google Scholar] [CrossRef]
- Mauldon, M. Estimating Mean Fracture Trace Length and Density from Observations in Convex Windows. Rock Mech. Rock Eng. 1998, 31, 201–216. [Google Scholar] [CrossRef]
- Mauldon, M.; Dunne, W.M.; Rohrbaugh, M.B. Circular scanlines and circular windows: New tools for characterizing the geometry of fracture traces. J. Struct. Geol. 2001, 23, 247–258. [Google Scholar] [CrossRef]
- Stavropoulou, M.; Exadaktylos, G.; Saratsis, G. A combined three-dimensional geological-geostatistical-numerical model of underground excavations in rock. Rock Mech. Rock Eng. 2007, 40, 213–243. [Google Scholar] [CrossRef]
- Hanke, J.R.; Fischer, M.P.; Pollyea, R.M. Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks. J. Struct. Geol. 2018, 108, 34–51. [Google Scholar] [CrossRef]
- Priest, S.; Hudson, J. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 183–197. [Google Scholar] [CrossRef]
- Rawnsley, K.; Rives, T.; Petti, J.-P.; Hencher, S.R.; Lumsden, A.C.; Burg, J.P. Joint development in perturbed stress fields near faults. J. Struct. Geol. 1992, 14, 939–951. [Google Scholar] [CrossRef]
- Ortega, O.J.; Gale, J.F.; Marrett, R. Quantifying diagenetic and stratigraphic controls on fracture intensity in platform carbonates: An example from the Sierra Madre Oriental, northeast Mexico. J. Struct. Geol. 2010, 32, 1943–1959. [Google Scholar] [CrossRef]
- Maerten, L.; Gillespie, P.; Pollard, D.D. Effects of local stress perturbation on secondary fault development. J. Struct. Geol. 2002, 24, 145–153. [Google Scholar] [CrossRef]
Input Parameters | Value | Meaning |
---|---|---|
Number of lags | 10 | Number of lags for each semi-covariance function |
Unit lag separation distance | 10 m | Interval distance for each lag |
Lags tolerance | 5 m | Hysteresis tolerance |
Azimuth | 0°, 5° …, 175° | Azimuth |
Az tol | 10° | Angle tolerance |
Bandwidth h | 20 m | Azimuth bandwidth |
Ndir | 36 | Number of directions to consider |
Region 1 | Field Survey | Traditional Method | Improved Method | Region 2 | Field Survey | Traditional Method | Improved Method | |
---|---|---|---|---|---|---|---|---|
Lineament Strength | n | 508 | 493 | 464 | N | 503 | 485 | 472 |
0.5125 | 0.3593 | 0.4742 | 0.7284 | 0.3890 | 0.4563 | |||
s | 0.3656 | 0.2939 | 0.3556 | S | 0.4823 | 0.3072 | 0.3330 | |
s2 | 0.1337 | 0.0864 | 0.1264 | s2 | 0.2326 | 0.0944 | 0.1109 | |
Cv | 0.7135 | 0.8179 | 0.7498 | Cv | 0.6621 | 0.7897 | 0.7300 | |
Lineament Density | n | 356 | 283 | 321 | N | 440 | 310 | 323 |
0.0886 | 0.0512 | 0.0941 | 0.1813 | 0.0599 | 0.0891 | |||
s | 0.1126 | 0.0753 | 0.1292 | S | 0.1937 | 0.0815 | 0.1017 | |
s2 | 0.0127 | 0.0057 | 0.0166 | s2 | 0.3751 | 0.0066 | 0.0103 | |
Cv | 1.2705 | 1.4714 | 1.3733 | Cv | 1.0682 | 1.3605 | 1.1413 |
Group | Field Measurement Data | Extracting Lineaments by Traditional Canny Algorithm | Extraction of Lineaments by Improved Line Tracking Method | |||
---|---|---|---|---|---|---|
Region 1 of interest | Trend | Tendency | Trend | Tendency | Trend | Tendency |
N45° E | NW | N62° E | NW | N47° E | NW | |
Region 2 of interest | Trend | Tendency | Trend | Tendency | Trend | Tendency |
N20° E | SN | N34° E | SN | N26° E | SN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Ni, C. Comparative Studies on the Extraction of Lineaments and Its Variability Based on an Improved Line Segment Tracking Method—Taking the Gaosong Ore Field in the Gejiu Gejiu Tin Ore Deposit as an Example. Appl. Sci. 2023, 13, 1314. https://doi.org/10.3390/app13031314
Fan J, Ni C. Comparative Studies on the Extraction of Lineaments and Its Variability Based on an Improved Line Segment Tracking Method—Taking the Gaosong Ore Field in the Gejiu Gejiu Tin Ore Deposit as an Example. Applied Sciences. 2023; 13(3):1314. https://doi.org/10.3390/app13031314
Chicago/Turabian StyleFan, Jianwei, and Chunzhong Ni. 2023. "Comparative Studies on the Extraction of Lineaments and Its Variability Based on an Improved Line Segment Tracking Method—Taking the Gaosong Ore Field in the Gejiu Gejiu Tin Ore Deposit as an Example" Applied Sciences 13, no. 3: 1314. https://doi.org/10.3390/app13031314
APA StyleFan, J., & Ni, C. (2023). Comparative Studies on the Extraction of Lineaments and Its Variability Based on an Improved Line Segment Tracking Method—Taking the Gaosong Ore Field in the Gejiu Gejiu Tin Ore Deposit as an Example. Applied Sciences, 13(3), 1314. https://doi.org/10.3390/app13031314