Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture
Abstract
:1. Introduction
1.1. Impact of Climate Change on Biosaline Agriculture and the Role of Halophytes
1.2. Halophytes as Crop Plants
1.3. Salt Tolerance Mechanism of Halophytes: Role of Secondary Metabolites
1.3.1. Modification in Morphology or Anatomy
1.3.2. SOS System Activate Salt Glands to Exclude Na from Cells
1.3.3. Succulence Mechanism and Epidermal Bladder Cells
1.3.4. Osmotic Adjustment through Osmolytes
1.3.5. Regulation of ROS by Secondary Metabolites
1.3.6. Activation of Hormonal Signaling
1.3.7. Maintaining Biogenetics
1.4. Halobacteria Diversity
1.5. Climate Change Modulates Rhizosphere Microbial Community
1.6. Secondary Metabolites Recruit Beneficial Rhizospheric Microbes
1.7. Halobacteria for Biosaline Agriculture
Halobacteria | Host Plant | Effect on Host Plant | Reference |
---|---|---|---|
Alcaligenes faecalis SBN01 and SBN02 | Wheat | Plant biomass increased at 600 mM NaCl, accumulation of Total Chl, and Carotenoid | [74] |
Glutamicibacter halophytcola | Tomato seeds | At 200 mM NaCl, Root biomass increased, K+/Na+ ratio changed | [75] |
Bacillus pumilus FAB10 | Wheat | At 250 mM NaCl, internal CO2 increased, reduced CAT, SOD, and glutathione reductase | [76] |
Aneurinibacillus aneurinilyticus, Paenibacillus sp. | Phaseolus vulgaris | root (220%) and shoot (425%) biomass and total chlorophyll content (57%) increased | [77] |
Klebsiella sp. | Avena sativa | Increased relative water content, proline content, electrolyte loss, MDA content in shoots, and decreased SOD and POD | [78] |
Bacillus tequilensis, Bacillus aryabhattai | Rice | Increase photosynthetic rate, transpiration, stomatal conductance, grain yield | [79] |
B. marisflavi, Zhihengliuella flava and H. nanhaiensis | Zea mays L. | Root and shoot length increased in 200 to 400 mM NaCl, high accumulation of proline compared with the non-inoculated plants | [80] |
S. chartreusis, S. tritolerans, and S. rochei | Salicornia bigelovii | enhanced shoot and root dry biomass by 32.3–56.5% and 42.3–71.9%, respectively, 69.1% increase in seed yield | [81] |
Alcaligenes sp. AF7 | Rice | enhanced the fresh and dry biomass of rice at 170 mM NaCl (EC 9 dS/m) | [82] |
Halomonas sp. Exo1 | Rice | enhanced germination index upto 83%, enhanced length and weight of vegetative parts | [83] |
P. plecoglossicida, B. flexus, and B. safensis | Bacopa monnieri | Increased in shoot Na+/K+ ratio, increased the growth, and increased bacoside A yield | [84] |
Staphylococcus sp., | Salicornia sp. | At 200 MNaCl, plant growth index was increased by 13.9–47.0% | [85] |
Halomonas, Bacillus | Alfalfa | Increased shoot fresh weight, increased biomass by 2.4 times higher than control | [65] |
2. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andjelkovic, V. Introductory chapter: Climate changes and abiotic stress in plants. In Plant, Abiotic Stress and Responses to Climate Change; IntechOpen: London, UK, 2018; p. 4. [Google Scholar]
- Ullah, A.; Bano, A.; Khan, N. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Front. Sustain. Food Syst. 2021, 5, 161. [Google Scholar] [CrossRef]
- Flowers, T.J.; Muscolo, A. Introduction to the special issue: Halophytes in a changing world. AoB Plants 2015, 7, plv020. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, B.; Li, L.; Zeng, F.; Li, X. Negative effects of long-term exposure to salinity, drought, and combined stresses on halophyte Halogeton glomeratus. Physiol. Plant. 2021, 173, 2307–2322. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.Y.; Yuan, F.; Dong, X.X.; Wang, J.; Wang, B.S. Distribution pattern and salt excretion rate of salt glands in two recretohalophyte species of Limonium (Plumbaginaceae). S. Afr. J. Bot. 2018, 115, 74–80. [Google Scholar] [CrossRef]
- Sampedro, I.; Pérez-Mendoza, D.; Toral, L.; Palacios, E.; Arriagada, C.; Llamas, I. Effects of halophyte root exudates and their components on chemotaxis, biofilm formation and colonization of halophilic bacterium Halomonas anticariensis FP35T. Microorganisms 2020, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Bawa, A.S.; Anilakumar, K.R. Genetically modified foods: Safety, risks and public concerns—A review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.B.; Castagna, A.; Ranieri, A.; Garcia-Caparros, P.; Santin, M.; Hernandez, J.A.; Espin, G.B. Halophyte based Mediterranean agriculture in the contexts of food insecurity and global climate change. Environ. Exp. Bot. 2021, 191, 104601. [Google Scholar] [CrossRef]
- Agudelo, A.; Carvajal, M.; Martinez-Ballesta, M.D.C. Halophytes of the Mediterranean Basin-Underutilized Species with the Potential to be Nutritious Crops in the Scenario of the Climate Change. Foods 2021, 10, 119. [Google Scholar] [CrossRef]
- Wang, J.; Yang, K.; Yao, L.; Ma, Z.; Li, C.; Si, E.; Wang, H. Metabolomics Analyses Provide Insights into Nutritional Value and Abiotic Stress Tolerance in Halophyte Halogeton glomeratus. Front. Plant Sci. 2021, 12, 1336. [Google Scholar] [CrossRef]
- Fu, H.M.; Yin, C.L.; Shen, Z.Y.; Yang, M.H. Flavonoids from the leaves of Apocynum venetum and their anti-inflammatory activity. J. Chem. Res. 2022, 46, 17475198211073871. [Google Scholar] [CrossRef]
- Ali, B.; Musaddiq, S.; Iqbal, S.; Rehman, T.; Shafiq, N.; Hussain, A. The Therapeutic Properties, Ethno pharmacology and Phytochemistry of Atriplex Species: A review. Pak. J. Biochem. Biotechnol. 2021, 2, 49–64. [Google Scholar] [CrossRef]
- Basyuni, M.; Illian, D.N.; Istiqomah, M.A.; Sari, D.P.; Nuryawan, A.; Hasibuan, P.A.Z.; Siregar, E.S. Prominent Secondary Metabolites from Selected Genus of Avicennia Leaves. Maced. J. Med. Sci. 2019, 7, 3765. [Google Scholar] [CrossRef] [Green Version]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Samiullah, A.B. Antimicrobial Potential of Various Extract of Suaeda fruticosa Arial Parts against Some Infectious Microbes Used. Asian Pac. J. Trop. Biomed. 2012, 1, 4. [Google Scholar]
- Sunita, A.; Ganesh, K.; Sonam, M. Screening and evaluation of bioactive components of Cenchrus ciliaris L. by GC-MS analysis. Int. Res. J. Pharm. 2017, 8, 69–76. [Google Scholar]
- Zorin, S.N.; Sidorova, Y.S.; Petrov, N.A.; Perova, I.B.; Malinkin, A.D.; Bokov, D.O.; Mazo, V.K. A new functional food ingredient enriched by Phytoecdisteroids and Polyphenols from quinoa grains (Chenopodium quinoa). Res. J. Pharm. Technol. 2021, 14, 4321–4328. [Google Scholar]
- Tarbeeva, D.V.; Krylova, N.V.; Iunikhina, O.V.; Likhatskaya, G.N.; Kalinovskiy, A.I.; Grigorchuk, V.P.; Fedoreyev, S.A. Biologically active polyphenolic compounds from Lespedeza bicolor. Fitoterapia 2022, 157, 105121. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omar, M.S.; Aly, M.S.; Hegazy, M.M. Essential oil constituents and biological activities of the halophytic plants, Suaeda vermiculata Forssk and Salsola cyclophylla Bakera growing in Saudi Arabia. J. Essent. Oil Bear. Plants 2019, 22, 82–93. [Google Scholar] [CrossRef]
- Perrino, E.V.; Valerio, F.; Jallali, S.; Trani, A.; Mezzapesa, G.N. Ecological and biological properties of Satureja cuneifolia Ten. and Thymus spinulosus Ten.: Two wild officinal species of conservation concern in Apulia (Italy). A preliminary survey. Plants 2021, 10, 1952. [Google Scholar] [CrossRef]
- Chekroun-Bechlaghem, N.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; Mansour, S.; Djebli, N.; Bouakline, H.; Atik-Bekkara, F. Antimicrobial and anti-inflammatory activities of three halophyte plants from Algeria and detection of some biomolecules by HPLC-DAD. Nat. Prod. Res. 2021, 35, 2107–2111. [Google Scholar] [CrossRef]
- Srivarathan, S.; Phan, A.D.T.; Hong, H.T.; Chua, E.T.; Wright, O.; Sultanbawa, Y.; Netzel, M.E. Tecticornia sp. (Samphire): A promising underutilized Australian indigenous edible halophyte. Front. Nutr. 2021, 8, 607799. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.G.; Locatelli, M.; Innosa, D.; Cacciagrano, F.; Polesná, L.; Santos, T.F.; Custódio, L. Unravelling the potential of the medicinal halophyte Eryngium maritimum L.: In vitro inhibition of diabetes-related enzymes, antioxidant potential, polyphenolic profile and mineral composition. S. Afr. J. Bot. 2019, 120, 204–212. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Marques, C.; Santos, T.F.; Rodrigues, M.; Custódio, L. Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: From traditional remedies to prospective products. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.; Monteiro, I.; Castañeda-Loaiza, V.; Placines, C.; Oliveira, M.C.; Reis, C.; Caperta, A.D.; Soares, F.; Pousão-Ferreira, P.; Pereira, C.; et al. Growth performance, in vitro antioxidant properties and chemical composition of the halophyte Limonium algarvense Erben are strongly influenced by the irrigation salinity. Ind. Crops Prod. 2020, 143, 111930. [Google Scholar] [CrossRef]
- Carius, B.; Silva, H.; Silva, A.M.; Pinto, D.C. Chemical Profiling of Limonium vulgare Mill. Using UHPLC-DAD-ESI/MS2 and GC-MS Analysis. Appl. Sci. 2022, 12, 6384. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Sui, N. Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci. 2018, 13, 149–154. [Google Scholar] [CrossRef]
- Wasim, M.A.; Naz, N. Anatomical adaptations of tolerance to salt stress in Cenchrus ciliaris L., a saline desert grass. JAPS J. Anim. Plant Sci. 2020, 30, 24. [Google Scholar]
- Rozentsvet, O.; Shuyskaya, E.; Bogdanova, E.; Nesterov, V.; Ivanova, L. Effect of salinity on leaf functional traits and chloroplast lipids composition in Two C3 and C4 Chenopodiaceae Halophytes. Plants 2022, 11, 2461. [Google Scholar] [CrossRef]
- Oi, T.; Clode, P.L.; Taniguchi, M.; Colmer, T.D.; Kotula, L. Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C4 monocotyledonous halophyte. Plant Cell Environ. 2022, 45, 1490–1506. [Google Scholar] [CrossRef]
- Jēkabsone, A.; Andersone-Ozola, U.; Karlsons, A.; Romanovs, M.; Ievinsh, G. Effect of salinity on growth, ion accumulation and mineral nutrition of different accessions of a crop wild relative legume species, Trifolium Fragiferum. Plants 2022, 11, 797. [Google Scholar] [CrossRef]
- Dumiņs, K.; Andersone-Ozola, U.; Samsone, I.; Elferts, D.; Ievinsh, G. Growth and physiological performance of a coastal species Trifolium fragiferum as affected by a coexistence with Trifolium repens, NaCl treatment and inoculation with rhizobia. Plants 2021, 10, 2196. [Google Scholar] [CrossRef]
- Bigot, S.; Pongrac, P.; Šala, M.; Van Elteren, J.T.; Martínez, J.P.; Lutts, S.; Quinet, M. The Halophyte Species Solanum chilense Dun. Maintains Its Reproduction despite Sodium Accumulation in Its Floral Organs. Plants 2022, 11, 672. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, R.; Ma, Y.; Song, J. Physiological and molecular evidence for Na+ and Cl− exclusion in the roots of two Suaeda salsa populations. Aquat. Bot. 2018, 146, 1–7. [Google Scholar] [CrossRef]
- Duan, X.; Pan, T.; Pu, Y.; Hou, X.; Lei, X.; Gou, M. Characterization of metabolic responses to salt stress in soybean seedling using gas chromatography-mass spectrometry. Emir. J. Food Agric. 2022, 34, 642–649. [Google Scholar] [CrossRef]
- Bueno, M.; Lendínez, M.L.; Calero, J.; Del Pilar Cordovilla, M. Salinity responses of three halophytes from inland salt marshes of Jaén (southern Spain). Flora 2020, 266, 151589. [Google Scholar] [CrossRef]
- Calone, R.; Mircea, D.M.; González-Orenga, S.; Boscaiu, M.; Lambertini, C.; Barbanti, L.; Vicente, O. Recovery from Salinity and Drought Stress in the Perennial Sarcocornia fruticosa vs. the Annual Salicornia europaea and S. veneta. Plants 2022, 11, 1058. [Google Scholar] [CrossRef]
- Yadav, S.; Elansary, H.O.; Mattar, M.A.; M-Elhindi, K.; Alotaibi, M.A.; Mishra, A. Differential accumulation of metabolites in Suaeda sp. provides new insights into abiotic stress tolerance in C4 halophytic species in elevated CO2 conditions. Agronomy 2021, 11, 31. [Google Scholar] [CrossRef]
- Arbelet-Bonnin, D.; Blasselle, C.; Palm, E.R.; Redwan, M.; Ponnaiah, M.; Laurenti, P.; Meimoun, P.; Gilard, F.; Gakière, B.; Mancuso, S.; et al. Metabolism regulation during salt exposure in the halophyte Cakile maritima. Environ. Exp. Bot. 2020, 177, 104075. [Google Scholar] [CrossRef]
- Ibraheem, F.; Al-Zahrani, A.; Mosa, A. Physiological Adaptation of Three Wild Halophytic Suaeda Species: Salt Tolerance Strategies and Metal Accumulation Capacity. Plants 2022, 11, 537. [Google Scholar] [CrossRef]
- Pungin, A.; Lartseva, L.; Loskutnikova, V.; Shakhov, V.; Krol, O.; Popova, E.; Volodina, A. The Content of Certain Groups of Phenolic Compounds and the Biological Activity of Extracts of Various Halophyte Parts of Spergularia marina (L.) Griseb. and Glaux maritima L. at Different Levels of Soil Salinization. Plants 2022, 11, 1738. [Google Scholar] [CrossRef]
- Linic, I.; Samec, D.; Gruz, J.; Vujcic Bok, V.; Strnad, M.; Salopek-Sondi, B. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plants 2019, 8, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mushhin, A.A.; Qari, S.H.; Fakhr, M.A.; Alnusairi, G.S.; Alnusaire, T.S.; ALrashidi, A.A.; Soliman, M.H. Exogenous Myo-Inositol Alleviates Salt Stress by Enhancing Antioxidants and Membrane Stability via the Upregulation of Stress Responsive Genes in Chenopodium quinoa L. Plants 2021, 10, 2416. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Geng, F.; Dong, X.; Yuan, F.; Wang, B. Sodium is the critical factor leading to the positive halotropism of the halophyte Limonium bicolor. Plant Biosyst. 2019, 153, 544–551. [Google Scholar] [CrossRef]
- Guo, J.; Dong, X.; Li, Y.; Wang, B. NaCl treatment markedly enhanced pollen viability and pollen preservation time of euhalophyte Suaeda salsa via up regulation of pollen development-related genes. J. Plant Res. 2020, 133, 57–71. [Google Scholar] [CrossRef]
- Panda, A.; Rangani, J.; Parida, A.K. Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. Plant Physiol. Biochem. 2021, 158, 284–296. [Google Scholar] [CrossRef]
- Wang, S.W.; Xu, F.F.; Guo, L.J.; He, T.T.; Li, X.L.; Yuan, L.; Liu, H.T. Different responses of the halophyte Carex pumila to salt stress. Biol. Plant. 2020, 64, 519–528. [Google Scholar] [CrossRef]
- Colchado-López, J.; Rougon-Cardoso, A.; Vélez, P.; Rosas, U. Meta-analysis of community composition patterns of halophyte and xerophyte rhizosphere associated bacteria. Rhizosphere 2022, 24, 100588. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Yin, F.; Zhang, F.; Cheng, Z.; Wang, H. Drivers on the Halophytes’ Rhizosphere Bacteria Community and Functions in North China Salinized Areas. Research Square, 22 February 2021. [Google Scholar] [CrossRef]
- Ruginescu, R.; Gomoiu, I.; Popescu, O.; Cojoc, R.; Neagu, S.; Lucaci, I.; Batrinescu-Moteau, C.; Enache, M. Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania. Microorganisms 2020, 8, 1903. [Google Scholar] [CrossRef]
- Gao, L.; Huang, Y.; Liu, Y.; Mohamed, O.A.A.; Fan, X.; Wang, L.; Ma, J. Bacterial community structure and potential microbial coexistence mechanism associated with three halophytes adapting to the Extremely hypersaline environment. Microorganisms 2022, 10, 1124. [Google Scholar] [CrossRef]
- Lahsini, A.I.; Sallami, A.; Obtel, M.; Douira, A.; El Modafar, C.; Benkerroum, N.; Filali-Maltouf, A. Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere 2022, 23, 100554. [Google Scholar] [CrossRef]
- Rosado-Porto, D.; Ratering, S.; Cardinale, M.; Maisinger, C.; Moser, G.; Deppe, M.; Schnell, S. Elevated atmospheric CO2 modifies mostly the metabolic active rhizosphere soil microbiome in the Giessen FACE experiment. Microb. Ecol. 2022, 83, 619–634. [Google Scholar] [CrossRef]
- Mukhtar, S.; Mirza, B.S.; Mehnaz, S.; Mirza, M.S.; Mclean, J.; Malik, K.A. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World. J. Microbiol. Biotechnol. 2018, 34, 1–17. [Google Scholar] [CrossRef]
- Zhou, Z.; Hua, J.; Xue, J. Salinity drives shifts in soil microbial community composition and network complexity along vegetation community succession in coastal tidal flats. Estuar. Coast. Shelf Sci. 2022, 276, 108005. [Google Scholar] [CrossRef]
- Korenblum, E.; Massalha, H.; Aharoni, A. Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell 2022, 34, 3168–3182. [Google Scholar] [CrossRef]
- Schütz, V.; Frindte, K.; Cui, J.; Zhang, P.; Hacquard, S.; Schulze-Lefert, P.; Dörmann, P. Differential impact of plant secondary metabolites on the soil microbiota. Front. Microbiol. 2021, 12, 1267. [Google Scholar] [CrossRef]
- Huang, A.C.; Jiang, T.; Liu, Y.X.; Bai, Y.C.; Reed, J.; Qu, B.; Goossens, A.; Nutzmann, H.W.; Bai, Y.; Osbourn, A. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 2019, 10, eaau6389. [Google Scholar] [CrossRef]
- Xiong, Y.W.; Li, X.W.; Wang, T.T.; Gong, Y.; Zhang, C.M.; Xing, K.; Qin, S. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol. Environ. Saf. 2020, 194, 110374. [Google Scholar] [CrossRef]
- Kim, B.; Westerhuis, J.A.; Smilde, A.K.; Flokova, K.; Suleiman, A.K.; Kuramae, E.E.; Zancarini, A. Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiol. Ecol. 2022, 98, fiac010. [Google Scholar] [CrossRef]
- Reang, L.; Bhatt, S.; Tomar, R.S.; Joshi, K.; Padhiyar, S.; Vyas, U.M.; Kheni, J.K. Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat. Sci. Rep. 2022, 12, 4699. [Google Scholar] [CrossRef]
- Etesami, H.; Beattie, G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 2018, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numan, M.; Bashir, S.; Khan, Y.; Mumtaz, R.; Shinwari, Z.K.; Khan, A.L.; Khan, A.; Al-Harrasi, A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 2018, 209, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Kearl, J.; McNary, C.; Lowman, J.S.; Mei, C.; Aanderud, Z.T.; Smith, S.T.; Nielsen, B.L. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front. Microbiol. 2019, 10, 1849. [Google Scholar] [CrossRef] [PubMed]
- Fatima, T.; Arora, N.K. Plant growth-promoting rhizospheric microbes for remediation of saline soils. In Phyto and Rhizo Remediation; Arora, N.K., Kumar, N., Eds.; Springer: Singapore, 2019; Volume 9, pp. 121–146. [Google Scholar]
- Xiong, Y.; Ju, X.; Li, X.; Gong, Y.; Xu, M.; Zhang, C.; Qin, S. Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic Actinobacteria Glutamicibacter halophytocola KLBMP 5180. Int. J. Biol. Macromol. 2020, 153, 1176–1185. [Google Scholar] [CrossRef]
- Li, P.S.; Kong, W.L.; Wu, X.Q.; Zhang, Y. Volatile organic compounds of the plant growth-promoting rhizobacteria JZ-GX1 enhanced the tolerance of Robinia pseudoacacia to salt stress. Front. Plant Sci. 2021, 12, 2303. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Romano-Rodríguez, E.; Mesa-Marín, J.; Sola-Elías, C.; Mateos-Naranjo, E. Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve the Response of Swiss Chard to Soil Salinization. Agronomy 2022, 12, 468. [Google Scholar] [CrossRef]
- Najafi Zilaie, M.; Mosleh Arani, A.; Etesami, H.; Dinarvand, M. Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. Front. Plant Sci. 2022, 13, 2625. [Google Scholar] [CrossRef]
- Ullah, S.; Bano, A. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can. J. Microbiol. 2015, 61, 307–313. [Google Scholar] [CrossRef]
- Hassan, T.U.; Bano, A.; Naz, I. Halophyte root powder: An alternative biofertilizer and carrier for saline land. Soil Sci. Plant Nutr. 2018, 64, 653–661. [Google Scholar] [CrossRef]
- Qin, S.; Feng, W.W.; Zhang, Y.J.; Wang, T.T.; Xiong, Y.W.; Xing, K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl. Environ. Microbiol. 2018, 84, e01533-18. [Google Scholar] [CrossRef] [Green Version]
- Babar, M.; Rasul, S.; Aslam, K.; Abbas, R.; Manzoor, I.; Hanif, M.K.; Naqqash, T. Mining of halo-tolerant plant growth promoting rhizobacteria and their impact on wheat (Triticum aestivum L.) under saline conditions. J. King Saud Univ. Sci. 2021, 33, 101372. [Google Scholar] [CrossRef]
- Xiong, Y.W.; Gong, Y.; Li, X.W.; Chen, P.; Ju, X.Y.; Zhang, C.M.; Yuan, B.; Lv, Z.P.; Xing, K.; Qin, S. Enhancement of Growth and Salt Tolerance of Tomato Seedlings by a Natural Halotolerant Actinobacterium Glutamicibacter halophytocola KLBMP 5180 Isolated from a Coastal Halophyte. Plant Soil 2019, 445, 307–322. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ahmad, I.; Pichtel, J. Growth Stimulation and Alleviation of Salinity Stress to Wheat by the Biofilm Forming Bacillus pumilus Strain FAB10. Appl. Soil Ecol. 2019, 143, 45–54. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. ACC Deaminase Producing Bacteria with Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Klebsiella sp. Confers Enhanced Tolerance to Salinity and Plant Growth Promotion in Oat Seedlings (Avena sativa). Microbiol. Res. 2018, 206, 25–32. [Google Scholar] [CrossRef]
- Shultana, R.; Kee Zuan, A.T.; Yusop, M.R.; Saud, H.M. Characterization of Salt-Tolerant Plant Growth-Promoting Rhizobacteria and the Effect on Growth and Yield of Saline-Affected Rice. PLoS ONE 2020, 15, e0238537. [Google Scholar] [CrossRef]
- Aslam, F.; Ali, B. Halotolerant Bacterial Diversity Associated with Suaeda fruticosa (L.) Forssk. Improved Growth of Maize under Salinity Stress. Agronomy 2018, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Mathew, B.T.; Torky, Y.; Amin, A.; Mourad, A.H.I.; Ayyash, M.M.; El-Keblawy, A.; El-Tarabily, K.A. Halotolerant marine rhizosphere-competent Actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation. Front. Microbiol. 2020, 11, 552. [Google Scholar] [CrossRef]
- Fatima, T.; Mishra, I.; Verma, R.; Arora, N.K. Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. Biotech 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Mukherjee, P.; Mitra, A.; Roy, M. Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front. Microbiol. 2019, 10, 1207. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, U.; Singh, D.N.; Mishra, P.; Pooja, G.A.U.R.; Babu, C.V.; Shanker, K.; Verma, R.K. Autochthonous halotolerant plant growth-promoting rhizobacteria promote bacoside A yield of Bacopa monnieri (L.) Nash and phytoextraction of salt-affected soil. Pedosphere 2020, 30, 671–683. [Google Scholar] [CrossRef]
- Komaresofla, B.R.; Alikhani, H.A.; Etesami, H.; Khoshkholgh-Sima, N.A. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Appl. Soil Ecol. 2019, 138, 160–170. [Google Scholar] [CrossRef]
Species | Secondary Metabolites | Economic Value | Reference |
---|---|---|---|
Apocynum venetum | Flavonoids | Anti-inflammatory activity | [11] |
Atriplex triangularis | Hydroxyecdysone, flavonoids, and phenolics | Nutritional properties rich source of proteins, vitamin A, and vitamin C | [12] |
Avicennia marina | Saponin, triterpenoid, or phytosterol. | As fodder, biological and pharmacological importance | [13] |
Beta vulgaris | Phenolics, carotenoid, ascorbic acid, betalains | food additive, improve redness in tomato paste and jellies | [14] |
Suaeda fruticosa | Effective against B. subtilus, P. aeruginosa, and S. aureus | [15] | |
Cenchurus cilliaris | Stigmasta-5, 22-Dien-3-ol, 6,6-Dideutero-nonen-1-ol-3 | Used in Pharmaceutical Industry | [16] |
Chenopodium quinoa | Phytoecdisteroids and polyphenols | Seed protein content twice that of rice, contains lysine | [17] |
Lespedeza bicolor | Ptrerocarpans, lespedezol, dihydrolespedezol | Significant virucidal activity | [18] |
Suaeda vermiculata, Salsola cyclophylla | Camphor, benzoic acid ester, borneol, α Terpineol, hexahydrofarnesyl acetone | antimicrobial and antioxidant activity | [19] |
Thymus spinulosus, Satureja cuneifolia | thymol, alpha pinene | as natural pesticide in organic agriculture | [20] |
Tamarix africana, Suaeda fruticosa | Rutin, Gallic acid, Kaempferol 3-O-glucoside | bactericidal activity against B. subtilis and S. auresus, strong antifungal effect against C. albicans | [21] |
Tecticornia sp. (Samphire) | Celossianin II, isocelosianin II, | indigenous edible halophyte in Australia | [22] |
Eryngium maritimum L. | carvacrol, 2,3-dimethoxybenzoic acid, naringenin, catechin, and t-cinnamic acid | In vitro inhibition of diabetes-related enzymes, antioxidant potential | [23] |
Artemisia campestris subsp. maritima | quinic, chlorogenic and caffeic acids, coumarin sulfates, and dicaffeoylquinic acids | Pharmaceutical, cosmetic, and/or food industries | [24] |
Limonium algarvense | 52 different metabolites present in leaves extract identified through LC-ESI(-)-HRMS/MS | Antioxidant, anti-inflammatory, neuroprotective, and antidiabetic properties | [25] |
Limonium vulgare | quercetin and myricetin or myricetin 3-rhamnoside | Nutraceuticals and/or pharmaceuticals | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadullah; Bano, A. Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture. Appl. Sci. 2023, 13, 1299. https://doi.org/10.3390/app13031299
Asadullah, Bano A. Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture. Applied Sciences. 2023; 13(3):1299. https://doi.org/10.3390/app13031299
Chicago/Turabian StyleAsadullah, and Asghari Bano. 2023. "Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture" Applied Sciences 13, no. 3: 1299. https://doi.org/10.3390/app13031299
APA StyleAsadullah, & Bano, A. (2023). Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture. Applied Sciences, 13(3), 1299. https://doi.org/10.3390/app13031299