On the Vaneless Space Vortex Structures in a Kaplan Turbine Model Operating at Speed No Load
Abstract
:1. Introduction
2. Experimental Setup
2.1. Test Stand Description and Instrumentation
- 1 accelerometer on the draft tube cone wall in radial direction (A0y).
- 1 pressure transducer on the vaneless space in axial direction (PVSA).
- 1 torque sensor on a guide vane stem (TGV).
- 1 strain gauge on the pressure side of a runner blade (SBR).
- 1 strain gauge on the shaft measuring the torque strain (SST).
2.2. Measurement Program
2.3. Methodology
3. Results
3.1. Identification of the VSV Structures
3.2. Precessing Frequencies of the VSV Structures
3.3. Excitation Type of the VSV Structures
3.4. Dynamic Behavior of the 2V and 3V Structures
3.5. Induced Responses of the 2V and 3V Structures
3.6. Cavitation Effects on 2V and 3V Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trivedi, C. Investigations of Transient Pressure Loading on a High Head Francis Turbine. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2015. [Google Scholar]
- Trivedi, C.; Cervantes, M.J.; Gandhi, B.K.; Dahlhaug, O.G. Pressure measurements on a high-head Francis turbine during load acceptance and rejection. J. Hydraul. Res. 2014, 52, 283–297. [Google Scholar] [CrossRef]
- Trivedi, C.; Gandhi, B.K.; Cervantes, M.J. Effect of transients on Francis turbine runner life: A review. J. Hydraul. Res. 2013, 51, 121–132. [Google Scholar] [CrossRef]
- Goyal, R.; Gandhi, B.K.; Cervantes, M.J. PIV measurements in Francis turbine—A review and application to transient operations. Renew Sustain. Energy Rev. 2018, 81, 2976–2991. [Google Scholar] [CrossRef]
- Seidel, U.; Mende, C.; Hübner, B.; Weber, W.; Otto, A. Dynamic loads in Francis runners and their impact on fatigue life. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032054. [Google Scholar] [CrossRef]
- Bakken, B.H.; Bjorkvoll, T. Hydropower unit start-up costs. IEEE Power Eng. Soc. Summer Meet. 2002, 3, 1522–1527. [Google Scholar] [CrossRef]
- Nilsson, O.; Sjelvgren, D. Hydro unit start-up costs and their impact on the short term scheduling strategies of Swedish power producers. IEEE Trans. Power Syst. 1997, 12, 38–44. [Google Scholar] [CrossRef]
- Coutu, A.; Monette, C.; Nennemann, B.; Chamberland-Lauzon, J.; Ruchonnet, N.; Taruffi, A.; Staatmann, R. Specific speed effect on Francis runner reliability under various operating conditions. Am. J. Hydropower Water Environ. Syst. 2016, 2, 11–15. [Google Scholar] [CrossRef]
- Coutu, A.; Chamberland-Lauzon, J. The impact of flexible operation on Francis runners. Int. J. Hydropower Dams 2015, 22, 2. [Google Scholar]
- Nennemann, B.; Morissette, J.-F.; Chamberland-Lauzon, J.; Monette, C.; Braun, O.; Melot, M.; Coutu, A.; Nicolle, J.; Giroux, A.-M. Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032055. [Google Scholar] [CrossRef]
- Melot, M.; Monette, C.; Coutu, A.; Nennemann, B. A new Francis runner design procedure to predict static stresses at speed-no-load operation. Int. J. Hydropower Dams 2014, 21, 1. [Google Scholar]
- Morissette, J.F.; Nicolle, J. Fluid–structure simulations of the stochastic behaviour of Francis turbine during startup. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 022026. [Google Scholar] [CrossRef]
- Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N. Fatigue analyses of the prototype Francis runners based on site measurements and simulations. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 012014. [Google Scholar] [CrossRef]
- Bouajila, S.; De Colombel, T.; Lowys, P.; Maitre, T. Hydraulic phenomena frequency signature of Francis turbines operating in part load conditions. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 082001. [Google Scholar] [CrossRef]
- Morissette, J.F.; Chamberland-Lauzon, J.; Nennemann, B.; Monette, C.; Giroux, A.M.; Coutu, A. Stress predictions in a Francis turbine at no-load operating regime. IOP Conf. Ser. Earth Environ. Sci. 2016, 49, 072016. [Google Scholar] [CrossRef]
- Trivedi, C.; Dahlhaug, O.G. Interaction between trailing edge wake and vortex rings in a Francis turbine at runaway condition: Compressible large eddy simulation. Phys. Fluids 2018, 30, 075101. [Google Scholar] [CrossRef]
- Trivedi, C.; Cervantes, M.J.; Gandhi, B.K.; Dahlhaug, O.G. Transient pressure measurements on a high head model Francis turbine during emergency shutdown, total load rejection, and runaway. J. Fluids Eng. 2014, 136, 121107–18. [Google Scholar] [CrossRef]
- Magnoli, M.V.; Anciger, D.; Maiwald, M. Numerical and experimental investigation of the runner channel vortex in Francis turbines regarding its dynamic flow characteristics and its influence on pressure oscillations. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 022044. [Google Scholar] [CrossRef]
- Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F. Flow characteristics and influence associated with inter-blade cavitation vortices at deep part load operations of a Francis turbine. IOP Conf. Ser. Earth Environ. Sci. 2017, 813, 012029. [Google Scholar] [CrossRef]
- Yamamoto, K.; Favrel, A.; Avellan, F.; Müller, A. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition. Exp. Fluids 2017, 58, 142. [Google Scholar] [CrossRef]
- Yang, J.; Gao, L.; Wang, Z.; Zhou, X.; Xu, H. The flow field investigations of no load conditions in axial flow fixed-blade turbine. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032028. [Google Scholar] [CrossRef]
- Yamamoto, K.; Roubaty, M.; Morisod, M.; Coulaud, M.; Houde, S. Numerical investigation of flow instabilities in Speed No-Load operation of a Bulb turbine. IOP Conf. Ser. Earth Environ. Sci. 2021, 774, 012115. [Google Scholar] [CrossRef]
- Soltani Dehkharqani, A.; Engström, F.; Aidanpää, J.O.; Cervantes, M. Experimental investigation of a 10 MW prototype Kaplan turbine during start-up operation. Energies 2019, 12, 4582. [Google Scholar] [CrossRef]
- Soltani Dehkharqani, A. An Experimental Investigation of a Prototype Kaplan Turbine and Numerical Analysis of Fluid Added Parameters on the Corresponding Model Turbine Runner. Ph.D. Thesis, Luleå Univeristy of Technology, Luleå, Sweden, 2020. [Google Scholar]
- Iovanel, R.G.; Dehkharqani, A.S.; Cervantes, M.J. Numerical Simulation of a Kaplan Prototype during Speed-No-Load Operation. Energies 2022, 15, 5072. [Google Scholar] [CrossRef]
- Melot, M.; Coulaud, M.; Chamberland-Lauzon, J.; Nennemann, B.; Deschenes, C. Hydraulic turbine start-up: A fluid-structure simulation methodology. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 022024. [Google Scholar] [CrossRef]
- Jonsson, P.P.; Nässelqvist, M.L.; Mulu, B.G.; Högström, C.M. Procedure to minimize rotor vibrations from flow-induced excitations in Kaplan turbines. IOP Conf. Ser. Earth Environ. Sci. 2022, 1079, 012098. [Google Scholar] [CrossRef]
- Půlpitel, L.; Skoták, A.; Koutnik, J. Vortices Rotating in the Vaneless Space of a Kaplan Turbine Operating under Off-Cam High Swirl Flow Conditions. In Hydraulic Machinery and Cavitation; Springer: Dordrecht, The Netherlands, 1996; pp. 925–934. [Google Scholar] [CrossRef]
- Houde, S.; Dumas, G.; Deschênes, C. Experimental and numerical investigations on the origins of rotating stall in a propeller turbine runner operating in no-load conditions. J. Fluids Eng. 2018, 140, 111104. [Google Scholar] [CrossRef]
- Houde, S.; Dumas, G.; Maciel, Y.; Deschênes, C. Investigations of rotating stall inception in a propeller turbine runner operating in low-load conditions. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 022021. [Google Scholar] [CrossRef]
- Houde, S. Analysis of the Part-Load and Speed-No-Load Flow Dynamics in a Model Propeller Hydraulic Turbine. Ph.D. Thesis, Universite Laval, Quebec City, QC, Canada, 2018. [Google Scholar]
- Skotak, A. Modelling of the swirl flow in a Kaplan turbine operating under off-cam conditions. In Modelling, Testing & Monitoring for Hydro Powerplants; Aqua-Media International: Lausanne, Switzerland, 1996; pp. 197–204. [Google Scholar]
- Nennemann, B.; Melot, M.; Monette, C.; Gauthier, M.; Afara, S.; Chamberland-Lauzon, J.; Juvansuu, T. Shear and vortex instabilities at deep part load of hydraulic turbines and their numerical prediction. IOP Conf. Ser. Earth Environ. Sci. 2021, 774, 012114. [Google Scholar] [CrossRef]
- Wolberg, G. Fast Fourier Transforms: A review. Mathematics 1988. [Google Scholar] [CrossRef]
- Roig, R.; Sánchez-Botello, X.; Escaler, X.; Mulu, B.; Högström, C.-M. On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model. Energies 2022, 15, 6311. [Google Scholar] [CrossRef]
- Friswell, M.I.; Penny, J.E.T.; Garvey, S.D.; Lees, A.W. Dynamics of Rotating Machines; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
α [°] | β [°] | [-] | [-] | Cavitation |
---|---|---|---|---|
2.6 | −16.8 | 0.14 | 1.6 | No |
3.25 | −13 | 0.18 | 1.6 | No |
3.98 | −10 | 0.22 | 1.6 | No |
0.5 | Yes | |||
4.97 | −6 | 0.27 | 0.5 | No |
6.8 | 0.8 | 0.37 | 1.6 | No |
7.35 | 3 | 0.41 | 1.6 | No |
0.5 | Yes | |||
7.86 | 4 | 0.44 | 1.6 | No |
8.13 | 5 | 0.46 | 1.6 | No |
0.5 | Yes |
2V | 3V | 4V | 6VGV | 6VB | |
---|---|---|---|---|---|
1 | 1 | 2 | 1 | 1 | |
3 | 2 | 3 | 1 | 1 |
α [°] | ||||
---|---|---|---|---|
2.6° | 3.98° | 6.8° | 7.35° | |
2V | 2.72 Hz | 2.27 Hz | 1.78 Hz | 1.66 Hz |
3V | 2.96 Hz | 2.57 Hz | 2.16 Hz | 2.08 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roig, R.; Sánchez-Botello, X.; Mulu, B.; Högström, C.-M.; Escaler, X. On the Vaneless Space Vortex Structures in a Kaplan Turbine Model Operating at Speed No Load. Appl. Sci. 2023, 13, 13285. https://doi.org/10.3390/app132413285
Roig R, Sánchez-Botello X, Mulu B, Högström C-M, Escaler X. On the Vaneless Space Vortex Structures in a Kaplan Turbine Model Operating at Speed No Load. Applied Sciences. 2023; 13(24):13285. https://doi.org/10.3390/app132413285
Chicago/Turabian StyleRoig, Rafel, Xavier Sánchez-Botello, Berhanu Mulu, Carl-Maikel Högström, and Xavier Escaler. 2023. "On the Vaneless Space Vortex Structures in a Kaplan Turbine Model Operating at Speed No Load" Applied Sciences 13, no. 24: 13285. https://doi.org/10.3390/app132413285
APA StyleRoig, R., Sánchez-Botello, X., Mulu, B., Högström, C.-M., & Escaler, X. (2023). On the Vaneless Space Vortex Structures in a Kaplan Turbine Model Operating at Speed No Load. Applied Sciences, 13(24), 13285. https://doi.org/10.3390/app132413285