Use of “Glass Curtain” Systems to Improve the Energy Efficiency and Thermal Comfort of Dwellings in a Warm Semi-Arid Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
- -
- Solar Gallery Deep Ratio (SGDR): depth of the glazed terrace.
- -
- Window Wall–Solar Gallery Ratio (WWSGR): proportion of windows in the original façade between the glazed terrace and the rest of the dwelling.
- -
- Window Frame Ratio (Fr): “glass curtain” frame size ratio.
- -
- ggl,SG: solar factor of the “glass curtain” glass.
- -
- ggl;sh;SG: solar radiation control of the “glass curtain” glass.
- -
- Solar Gallery–Indoor Dwelling Ventilation Ratio through the wall (SGIVR): ventilation rate between the glazed terrace and the inside of the dwelling through louvres or glazing openings.
- -
- Thermal Balancing Ventilation Ratio (TBVR): supply ventilation flow rate of the proposed heat-balancing fan system.
3. Results
3.1. Thermal Performance Improvements of the Dwelling with a Balcony Frameless Retractable Glazing System (“Glass Curtain”)
3.1.1. Indoor Temperatures
3.1.2. Thermal Comfort
3.1.3. Energy Efficiency
3.2. Influence of the Modification of Design Parameters of the “Glass Curtain” System
3.2.1. Modified Parameters
Solar Gallery Deep Ratio (SGDR)
ggl,SG
Window Wall–Solar Gallery Ratio (WWSGR)
ggl;sh;SG
Solar Gallery–Indoor Dwelling Ventilation Ratio through the Wall (SGIVR)
Thermal Balancing Ventilation Ratio (TBVR)
Proposed Optimal Design Parameters of the “Glass Curtain” System
3.2.2. Indoor Temperatures
3.2.3. Thermal Comfort
3.2.4. Energy Efficiency
4. Discussion
4.1. Thermal Performance Improvements of the Dwelling with the Balcony Frameless Retractable Glazing System
4.2. Influence of the Modification of Design Parameters of the “Glass Curtain” System to Optimise Thermal Performance
5. Conclusions
- (1)
- This work demonstrates that the use of balcony frameless retractable glazing systems (“glass curtains”) greatly improves the thermal comfort and the energy efficiency of dwellings in the BShs climate. This system captures the maximum solar radiation in winter because it has a higher proportion of glass than other glazing systems as it does not have frames and it allows full opening for ventilation in summer. Consequently, it generates more of a greenhouse effect to heat the house in winter for free, taking advantage of the effects of solar radiation, and the maximum dissipation of heat excess in summer with natural ventilation. As a result, this system increases the indoor temperatures inside the dwelling by about 4 °C in winter and avoids air overheating in summer. It reduces the annual indoor thermal oscillation inside the dwelling from more than 16 °C to almost only 10 °C and generally maintains the indoor temperatures between 19 °C and 29 °C throughout the year without the use of air-conditioning systems. Consequently, it reduces the heating energy needs by almost 60% and the total annual energy needs by more than 25% compared to the dwelling without a “glass curtain” system.
- (2)
- The indoor thermal performance improvement of the dwelling is greater if the glazed terrace remains insulated and separated from the rest of the dwelling in winter and if it is adequately ventilated in summer. In addition, the glazed terrace has a much greater impact on the thermal performance of the dwelling if the glazed terrace is thermally insulated at the floor, roof, and side walls, or if the adjacent terraces are also glazed.
- (3)
- The thermal performance of the dwelling improves with a deeper glazed terrace, with a “glass curtain” glazing with higher solar factor, a higher proportion of windows in the original façade separating the glazed terrace from the rest of the house, mobile solar control systems in summer, a scheduled ventilation system between the glazed terrace and the inside of the dwelling, and mechanical ventilation that balances the temperatures between rooms. This work demonstrates that glazed terraces with glass curtains using the proposed design parameters allow us to achieve a zero-consumption and thermally comfortable dwelling all year round without the use of air-conditioning systems in this climate. The annual thermal oscillation is reduced from 15 °C without the “glass curtain” to almost only 6 °C with the proposed solution, with the minimum temperatures rarely falling below 21 °C and the maximum temperatures rarely exceeding 27 °C.
- (4)
- The conclusions of this research can be applied to many dwellings in this climate zone because the building analysed has common characteristics with most residential buildings in this geographical area. This research opens up the possibility of using “glass curtain” systems as an energy refurbishment method for existing buildings and to adapt the design criteria for new buildings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Union. Directiva 2010/31/UE del Parlamento Europeo y del Consejo de 19 de Mayo de 2010 Relativa a la Eficiencia Energética de los Edificios (Refundición); European Union: Maastricht, The Netherlands, 2010. [Google Scholar]
- European Union. Directiva (UE) 2018/844 del Parlamento Europeo y del Consejo, de 30 de Mayo de 2018, por la que se Modifica la Directiva 2010/31/UE Relativa a la Eficiencia Energética de los Edificios y la Directiva 2012/27/UE Relativa a la Eficiencia Energética; European Union: Maastricht, The Netherlands, 2018. [Google Scholar]
- Agencia Estatal Boletín Oficial del Estado. Real Decreto 732/2019, de 20 de Diciembre, por el Que se Modifica el Código Técnico de la Edificación, Aprobado por el Real Decreto 314/2006, de 17 de Marzo; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2019. [Google Scholar]
- Agencia Estatal Boletín Oficial del Estado. Real Decreto 390/2021, de 1 de junio, por el que se Aprueba el Procedimiento Básico para la Certificación de la Eficiencia Energética de los Edificios; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2021. [Google Scholar]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Towards nearly zero-energy buildings in Mediterranean countries: Fifteen years of implementing the Energy Performance of Buildings Directive in Spain (2006–2020). J. Build. Eng. 2021, 44, 102962. [Google Scholar] [CrossRef]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain. Energy 2018, 161, 618–634. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolfm, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Olcina, J.; Serrano-Notivolit, R.; Miró, J.; Meseguer-Ruiz, O. Tropical nights in the Spanish Mediterranean coast: Recent evolution (1950–2014). Clim. Res. 2019, 78, 225–236. [Google Scholar] [CrossRef]
- Miró, J.; Olcina, J. Cambio climático y confort térmico. Efectos en el turismo de la Comunidad Valenciana. Rev. Investig. Turísticas 2020, 20, 1–30. [Google Scholar]
- Albatayneh, A.; Alterman, D.; Page, A.; Moghtaderi, B. The significance of building design for the climate. Environ. Clim. Technol. 2018, 22, 165–178. [Google Scholar] [CrossRef]
- Pesic, N.; Roset, J.; Muros, A. Natural ventilation potential of the Mediterranean coastal region of Catalonia. Energy Build. 2018, 169, 236–244. [Google Scholar] [CrossRef]
- Altan, H. Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy Build. 2021, 250, 111281. [Google Scholar]
- Ghrab-Morcos, N. CHEOPS: A simplified tool for thermal assessment of Mediterranean residential buildings in hot and cold seasons. Energy Build. 2005, 37, 651–662. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; González-Avilés, Á.B.; Galiano-Garrigós, A.; Lozoya-Peral, A. Optimization of Architectural Thermal Envelope Parameters in Modern Single-Family House Typologies in Southeastern Spain to Improve Energy Efficiency in a Dry Mediterranean Climate. Sustainability 2022, 14, 3910. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; Sabatell-Canales, S.; González-Avilés, Á.B.; Galiano-Garrigós. Influence of Spanish Energy-Saving Standard on Thermal Comfort and Energy Efficiency Owing to the War in Ukraine: Case Study of an Office Building in a Dry Mediterranean Climate. Sustainability 2023, 13, 2102. [Google Scholar] [CrossRef]
- Cañadas, J.J.M.; Fernández, Á.B.L.; Juan, J.J.P.P.; Hernández, J.C.L. Invernaderos con Cubierta de Plástico y Cristal en el Sureste Español. Cuad. Investig. 2008, 1, 1–54. [Google Scholar]
- Zhang, H.; Duan, D.; Yang, X.; Zheng, W. Application of CPMV for improving the indoor thermal environment under global solar radiation. Indoor Built Environ. 2023, 32, 797–814. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Sánchez-García, D.; Tejedor, B.; Rubio-Bellido, C. An innovative approach to assess the limitations of characterizing solar gains in buildings: A Spanish case study. Energy Build. 2023, 293, 113206. [Google Scholar] [CrossRef]
- Chan, Y.H.; Zhang, Y.; Tennakoon, T.; Fu, S.C.; Chan, K.C.; Tso, C.Y.; Yu, K.M.; Wan, M.P.; Huang, B.L.; Yao, S.; et al. Potential passive cooling methods based on radiation controls in buildings. Energy Convers. Manag. 2022, 272, 116342. [Google Scholar] [CrossRef]
- Halawa, E.; Van Hoof, J.; Soebarto, V. The impacts of the thermal radiation field on thermal comfort, energy consumption and control—A critical overview. Renew. Sustain. Energy Rev. 2014, 37, 907–918. [Google Scholar] [CrossRef]
- Kazkaz, M.; Pavelek, M. Operative temperature and globe temperature. Eng. Mech. 2013, 20, 319–325. [Google Scholar]
- Atmaca, I.; Kaynakli, O.; Yigit, A. Effects of radiant temperature on thermal comfort. Build. Environ. 2007, 42, 3210–3220. [Google Scholar] [CrossRef]
- Song, B.; Bai, L.; Yang, L. Analysis of the long-term effects of solar radiation on the indoor thermal comfort in office buildings. Energy 2022, 247, 123499. [Google Scholar] [CrossRef]
- Arens, E.; Hoyt, T.; Zhou, X.; Huang, L.; Zhang, H.; Schiavon, S. Modeling the comfort effects of short-wave solar radiation indoors. Build. Environ. 2015, 88, 3–9. [Google Scholar] [CrossRef]
- UNE-EN ISO 7730:2006; Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria (ISO 7730:2005). AENOR, Agencia Española de Normalización y Certifiación: Madrid, Spain, 2006.
- Pérez-Carramiñana, C.; Maciá-Mateu, A.; Sirvent-García, G.; Lledó-Llorca, I. Study of Natural Ventilation and Solar Control Strategies to Improve Energy Efficiency and Environmental Quality in Glazed Heated Swimming Pools in a Dry Mediterranean Climate. Sustainability 2022, 14, 8243. [Google Scholar] [CrossRef]
- Gao, C.F.; Lee, W.L. Evaluating the influence of window types on the natural ventilation performance of residential buildings in Hong Kong. Int. J. Vent. 2011, 10, 227–238. [Google Scholar] [CrossRef]
- Alhamad, I.M.; Alsaleem, M.; Taleb, H. Passive Heating and Cooling Potential Strategies: A Comparison between Moderate Summers and Warm Winters Climate Zones. J. Phys. Conf. Ser. 2019, 1276, 012059. [Google Scholar] [CrossRef]
- Lucon, O.; Ürge-Vorsatz, D.; Ahmed, A.Z.; Akbari, H.; Bertoldi, P.; Cabeza, L.F.; Eyre, N.; Gadgil, A.; Harvey, L.D.; Jiang, Y.; et al. Climate Change 2014: Mitigation of Climate Change. In IPCC Working Group III Contribution to AR5: Chapter 9—Buildings; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- González-Avilés, Á.B.; Pérez-Carramiñana, C.; Galiano-Garrigós, A.; Ibarra-Coves, F.; Lozano-Romero, C. Analysis of the Energy Efficiency of Le Corbusier’s Dwellings: The Cité Frugès, an Opportunity to Reuse Garden Cities Designed for Healthy and Working Life. Sustainability 2022, 14, 4537. [Google Scholar] [CrossRef]
- Lozoya-Peral, A.; Pérez-Carramiñana, C.; González-Avilés, Á.B.; Galiano-Garrigós. Exploring energy retrofitting strategies and its effect on comfort in a vernacular building in a dry Mediterranean climate. Sustainability 2023, 13, 1381. [Google Scholar]
- Huete, R. Tendencias del turismo residencial: El caso del Mediterráneo Español. El Periplo SustenTable 2008, 14, 65–87. [Google Scholar] [CrossRef]
- Suárez, M. Los Espacios Intermedios Como Tema y Estrategia de Proyecto en la Arquitectura Moderna. 2013; 216p. Available online: http://saber.ucv.ve/bitstream/123456789/7780/1/T026800009758-0-PDF_Marjorie_S_Surez_Pesquera_ltima_versin-000%281%29.pdf (accessed on 20 March 2022).
- Sabatell-Canales, S.; Pérez-Carramiñana, C.; González-Avilés, Á.B.; Galiano-Garrigós. Influence of Balcony Glazing on Energy Efficiency and Thermal Comfort of Dwellings in a Dry Mediterranean Climate within a Warm Semi-Arid Climate. Sustainability 2023, 13, 1741. [Google Scholar] [CrossRef]
- Hilliaho, K.; Kovalainen, V.; Huuhka, S.; Lahdensivu, J. Glazed spaces: A simplified calculation method for the evaluation of energy savings and interior temperatures. Energy Build. 2016, 125, 27–44. [Google Scholar] [CrossRef]
- Bataineh, K.M.; Fayez, N. Analysis of thermal performance of building attached sunspace. Energy Build. 2011, 43, 1863–1868. [Google Scholar] [CrossRef]
- Fernández-González, A. Analysis of the thermal performance and comfort conditions produced by five different passive solar heating strategies in the United States midwest. Sol. Energy 2007, 81, 581–593. [Google Scholar] [CrossRef]
- Borrallo-Jiménez, M.; Lopezdeasiain, M.; Esquivias, P.M.; Delgado-Trujillo, D. Comparative study between the Passive House Standard in warm climates and Nearly Zero Energy Buildings under Spanish Technical Building Code in a dwelling design in Seville, Spain. Sci. Energy Build. 2021, 254, 111570. [Google Scholar] [CrossRef]
- Troup, L.; Phillips, R.; Eckelman, M.J.; Fannon, D. Effect of window-to-wall ratio on measured energy consumption in US office buildings. Energy Build. 2019, 203, 109434. [Google Scholar] [CrossRef]
- Simon, F.; Ordoñez, J.; Girard, A.; Parrado, C. Modelling energy use in residential buildings: How design decisions influence final energy performance in various Chilean climates. Indoor Built Environ. 2019, 28, 533–551. [Google Scholar] [CrossRef]
- López-Ochoa Luis, M.; Las-Heras-Casas, J.; López-González, L.M.; Olasolo-Alonso, P. Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector. Energy 2019, 176, 335–352. [Google Scholar] [CrossRef]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; López-González, L.M.; García-Lozano, C.; López-Ochoa, L.M.; Las-Heras-Casas, J.; López-González, L.M.; García-Lozano, C. Environmental and energy impact of the EPBD in residential buildings in cold Mediterranean zones: The case of Spain. Energy Build. 2017, 150, 567–582. [Google Scholar] [CrossRef]
- Causone, F.; Pietrobon, M.; Pagliano, L.; Erba, S. A high performance home in the Mediterranean climate: From the design principle to actual measurements. Energy Procedia 2017, 140, 67–79. [Google Scholar] [CrossRef]
- AICIA. Líder-Calener Unified Tool Software, v2.0.2253.1167; Dirección General de Arquitectura, Vivienda y Suelo del Ministerio de Transportes, Movilidad y Agenda Urbana y por el Instituto para la Diversificación y Ahorro de la Energía (IDEA): Madrid, Spain, 2021; Available online: https://www.codigotecnico.org/Programas/HerramientaUnificadaLIDERCALENER.html (accessed on 18 December 2021).
- Hilliaho, K. Energy Saving Potential and Interior Temperatures of Glazed Spaces Evaluation through Measurements and Simulations; Tampereen teknillinen yliopisto—Tampere University of Technology: Tampere, Finland, 2017. [Google Scholar]
- Sung, U.; Kim, S. A Study on the Improvement of Double-Skin Façade Operation for Reducing Heating Load in Winter. Sustainability 2019, 11, 6238. [Google Scholar] [CrossRef]
- Shameria, M.A.; Alghoulb, M.A.; Sopianb, K.; Zain, M.F.M.; Elayeb, O. Perspectives of double skin façade systems in buildings and energy saving. Renew. Sustain. Energy Rev. 2011, 15, 1468–1475. [Google Scholar] [CrossRef]
- Lu, W. Dynamic Shading and Glazing Technologies: Improve Energy, Visual, and Thermal Performance. Energy Built Environ. 2024, 5, 211–229. [Google Scholar] [CrossRef]
- Wang, N.; Ghaeili, N.; Wang, J.; Feng, Y.; Zhang, E.; Chen, C. Using architectural glazing systems to harness solar thermal potential for energy savings and indoor comfort. Renew. Energy 2023, 219, 119436. [Google Scholar] [CrossRef]
- Aguilar-Santana, J.; Jarimi, H.; Velasco-Carrasco, M.; Riffat, S. Review on window-glazing technologies and future prospects. Int. J. Low-Carbon Technol. 2020, 15, 112–120. [Google Scholar] [CrossRef]
- Duan1, Q.; Wang, J. A parametric study of the combined effects of window property and air vent placement. Indoor Built Environ. 2019, 28, 345–361. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Confort; Mc Graw Hill: New York, NY, USA, 1972. [Google Scholar]
- Castejón, E. NTP 74: Thermal Comfort-Fanger’s Method of Assessment; Ministerio de Trabajo y Asuntos Sociales: Madrid, Spain, 1983. [Google Scholar]
- Luo, M.; Wang, Z.; Kec, K.; Caod, B.; Zhaib, Y.; Zhoue, X. Human metabolic rate and thermal comfort in buildings: The problem and Challenge. Build. Environ. 2018, 131, 44–52. [Google Scholar] [CrossRef]
- Yang, C.; Yin, T.; Fu, M. Study on the allowable fluctuation ranges of human metabolic rate and thermal environment parameters under the condition of thermal comfort. Build. Environ. 2016, 103, 155–164. [Google Scholar] [CrossRef]
- Kalmár, F. An indoor environment evaluation by gender and age using an advanced personalized ventilation system. Build. Serv. Eng. Res. Technol. 2017, 38, 505–521. [Google Scholar] [CrossRef]
- Ege Çeter, A.; Furkan Ozbey, M.; Turhan, C. Gender inequity in thermal sensation based on emotional intensity for participants in a warm mediterranean climate zone. Int. J. Therm. Sci. 2023, 185, 108089. [Google Scholar] [CrossRef]
- Duan1, Q.; Wang, J. A review on predicted mean vote and adaptive thermal comfort models. Build. Serv. Eng. Res. Technol. 2024, 35, 23–35. [Google Scholar] [CrossRef]
- ASHRAE Standard-55; Thermal Environment Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2020.
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Kriticos, D.; Webber, B.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J. CliMond: Global hihg-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfica. Climate Projections for the 21st Century; Ministerio para la Transición Ecológica y el Reto Demográfica, Agencia Estatal de Meteorología: Madrid, Spain, 2023. [Google Scholar]
- UNE-EN 60584-1:2013; Thermocouples—Part 1: EMF Specifications and Tolerances. AENOR. Agencia Española de Normalización y Certificación: Madrid, Spain, 2013.
Model | Measuring Range | Accuracy | |
---|---|---|---|
Thermographic camera | Testo 868 | −15–+50 °C | ±2 °C/±2% |
+10–+95% HR | ±2% HR | ||
Thermal transmittance flowmeter | Testo 435-2 | −20–+50 °C | - |
Humidity/temperature probe | Testo | −20–+70 °C | ±0.3 °C |
+10–+100% HR | ±2% HR | ||
Surface probe | Testo | −20–+70 °C | ±0.1 °C |
Hot-wire probe | Testo | −20–+70 °C | ±0.3 °C |
±0.3 m/s | |||
Black globe temperature probe | Testo | +0–+120 °C | Class 1 (UNE-EN 60584-1) [63] |
Thermal Properties | Thickness (cm) | U (W/m2·K) | g | Absorptivity | Air Permeability m3/h·m2 |
---|---|---|---|---|---|
Opaque façade enclosure | 30 | U = 0.42 | |||
Glass (80% of the window) | 2.0 | Ug = 2.421 | 0.75 | ||
Frames (20% of the window) | 7.0 | Uf = 4.562 | 0.75 | 50.00 | |
Floor | 40.0 | U = 0.90 | |||
Roof | 40.0 | U = 0.90 | |||
Air change rates by natural ventilation = 0.6 ren/h | |||||
Frame air permeability = 27.00 m3/h·m2 |
Parameter | Applicable Regulation | |||
---|---|---|---|---|
People/m2 | Metabolic rate | Schedule | DB-HE | |
Occupation | 0.05 | 1 | Activated 24/7 | Application Guide 2019 [61] |
Cop | Months | Schedule | DB-HE Annex D | |
Cooling equipment | 4 | 6/7/8/9 | 0:00–24:00 27 °C | Operational conditions and |
Heating equipment | 3.5 | 1/2/3/4/5/10/11/12 | 0:00–24:00 19 °C | use profiles [41] |
Ren/h | Schedule | |||
Mechanical ventilation | 0.44 | Activated 24/7 | DB-HS3 [41] | |
Natural nocturnal ventilation | 0.44 | 0:00–08:00 100% | ||
Average illumination | Power | |||
Internal lightning loads | 200 lux | 2 W/m2 | 0:00–07:00 10% | Royal Decree 486/1997 |
07:00–19:00 30% | Annex IV [62] | |||
19:00–23:00 100%23:00–24:00 50% |
Parameter | Applicable Regulation | |||
---|---|---|---|---|
Type of control | Thermal property | Geometric property | ||
Emissivity | Distance to glass | |||
Window shading | Indoor air temperature. | 0.20 | 15 cm | DB-HE [57] |
Dry Bulb Air Temperature (°C) (Max–Min/Average/Difference) | Operating Temperature (°C) (Max–Min/Average/Difference) | |
---|---|---|
Without “glass curtain” | 21.0–15.5/18.3/5.5 | 22.1–14.9/18.5/7.2 |
With “glass curtain” closed | 27.1–16.2/21.7/10.9 | 28.2–15.7/21.9/12.5 |
Parameter | Value |
---|---|
Solar Gallery Deep Ratio (SGDR) | 2.5 m |
Window Wall–Solar Gallery Ratio (WWSGR) | 75% |
Window Frame Ratio (Fr) | 2% (“glass curtain”) |
ggl,SG | 0.85 |
ggl;sh;SG | 1.0 (in winter)/0.10 (in summer) |
Solar Gallery–Indoor Dwelling Ventilation Ratio through the wall (SGIVR) | Scheduled ventilation system |
Thermal Balancing Ventilation Ratio (TBVR) | Ceiling fans or heat recovery ventilators |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Carramiñana, C.; Sabatell-Canales, S.; González-Avilés, Á.B.; Galiano-Garrigós, A. Use of “Glass Curtain” Systems to Improve the Energy Efficiency and Thermal Comfort of Dwellings in a Warm Semi-Arid Mediterranean Climate. Appl. Sci. 2023, 13, 13082. https://doi.org/10.3390/app132413082
Pérez-Carramiñana C, Sabatell-Canales S, González-Avilés ÁB, Galiano-Garrigós A. Use of “Glass Curtain” Systems to Improve the Energy Efficiency and Thermal Comfort of Dwellings in a Warm Semi-Arid Mediterranean Climate. Applied Sciences. 2023; 13(24):13082. https://doi.org/10.3390/app132413082
Chicago/Turabian StylePérez-Carramiñana, Carlos, Samuel Sabatell-Canales, Ángel Benigno González-Avilés, and Antonio Galiano-Garrigós. 2023. "Use of “Glass Curtain” Systems to Improve the Energy Efficiency and Thermal Comfort of Dwellings in a Warm Semi-Arid Mediterranean Climate" Applied Sciences 13, no. 24: 13082. https://doi.org/10.3390/app132413082