Characterization of the Fracture Network and Its Spatial Variability in Complex Faulted Zones: Implication in Landslide Susceptibility Analysis
Abstract
:1. Introduction
2. Regional Geological Framework
3. Methodology and Background Concepts
4. Results
4.1. Claviere-Cesana Torinese Area
4.2. Oulx Region
4.2.1. Seguret River Area
4.2.2. Pont Ventoux Area
4.2.3. Salbertand Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adler, P.M.; Thovert, J.F. Fractures and Fracture Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; Volume 15. [Google Scholar]
- Zimmerman, R.; Main, I. Hydromechanical behavior of fractured rocks. Int. Geophys. Ser. 2004, 89, 363–422. [Google Scholar]
- Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.; Shipton, Z.K.; Wibberley, C.A.J.; Withjack, M.O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 2010, 32, 1557–1575. [Google Scholar] [CrossRef]
- Ortega, O.; Marrett, R. Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico. J. Struct. Geol. 2000, 22, 571–588. [Google Scholar] [CrossRef]
- Shipton, Z.K.; Cowie, P.A. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. J. Struct. Geol. 2003, 25, 333–344. [Google Scholar] [CrossRef]
- Putz-Perrier, M.W.; Sanderson, D.J. Spatial distribution of brittle strain in layered sequences. J. Struct. Geol. 2008, 30, 50–64. [Google Scholar] [CrossRef]
- Mitchell, T.M.; Faulkner, D.R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. J. Struct. Geol. 2009, 31, 802–816. [Google Scholar] [CrossRef]
- Savage, H.M.; Brodsky, E.E. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. J. Geophys. Res. Solid Earth 2011, 116, B3. [Google Scholar] [CrossRef]
- Schueller, S.; Braathen, A.; Fossen, H.; Tveranger, J. Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: Statistical analysis of field data. J. Struct. Geol. 2013, 52, 148–162. [Google Scholar] [CrossRef]
- Watkins, H.; Healy, D.; Bond, C.E.; Butler, R.W. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland. J. Struct. Geol. 2018, 108, 180–197. [Google Scholar] [CrossRef]
- Torabi, A.; Johannessen, M.U.; Ellingsen, T.S.S. Fault core thickness: Insights from siliciclastic and carbonate rocks. Geofluids 2019, 2019, 2918673. [Google Scholar] [CrossRef]
- Igbokwe, O.A.; Mueller, M.; Bertotti, G.; Timothy, J.J.; Abah, O.; Immenhauser, A. Morphology and topology of dolostonelithons in the regional Carboneras Fault Zone, Southern Spain. J. Struct. Geol. 2020, 137, 104073. [Google Scholar] [CrossRef]
- Andrews, B.J.; Shipton, Z.K.; Lord, R.; McKay, L. The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: A case study from Spireslack Surface Coal Mine, Scotland. Solid Earth 2020, 11, 2119–2140. [Google Scholar] [CrossRef]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Yu, Z.; Tan, Y.; Ding, Y.; Chen, D.; Wang, T. Influence of hole diameter on mechanical properties and stability of granite rock surrounding tunnels. Phys. Fluids 2023, 35, 064121. [Google Scholar]
- Chen, S.J.; Zhao, Z.H.; Feng, F.; Zhang, M.Z. Stress evolution of deep surrounding rock under characteristics of bi-modulus and strength drop. J. Cent. South Univ. 2022, 29, 680–692. [Google Scholar] [CrossRef]
- McGrath, A.G.; Davison, I. Damage zone geometry around fault tips. J. Struct. Geol. 1995, 17, 1011–1024. [Google Scholar] [CrossRef]
- Peacock, D.C.P. Propagation, interaction and linkage in normal fault systems. Earth-Sci. Rev. 2002, 58, 121–142. [Google Scholar] [CrossRef]
- Crider, J.G.; Peacock, D.C. Initiation of brittle faults in the upper crust: A review of field observations. J. Struct. Geol. 2004, 26, 691–707. [Google Scholar] [CrossRef]
- Kim, Y.S.; Peacock, D.C.P.; Sanderson, D.J. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. J. Struct. Geol. 2003, 25, 793–812. [Google Scholar] [CrossRef]
- Kim, Y.S.; Peacock, D.C.; Sanderson, D.J. Fault damage zones. J. Struct. Geol. 2004, 26, 503–517. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sanderson, D.J. Structural similarity and variety at the tips in a wide range of strike–slip faults: A review. Terra Nova 2006, 18, 330–344. [Google Scholar] [CrossRef]
- Choi, J.H.; Edwards, P.; Ko, K.; Kim, Y.S. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Sci. Rev. 2016, 152, 70–87. [Google Scholar] [CrossRef]
- Fossen, H.; Rotevatn, A. Fault linkage and relay structures in extensional settings—A review. Earth-Sci. Rev. 2016, 154, 14–28. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Nixon, C.W.; Rotevatn, A.; Sanderson, D.J.; Zuluaga, L.F. Glossary of fault and other fracture networks. J. Struct. Geol. 2016, 92, 12–29. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Dimmen, V.; Rotevatn, A.; Sanderson, D.J. A broader classification of damage zones. J. Struct. Geol. 2017, 102, 179–192. [Google Scholar] [CrossRef]
- Umili, G.; Bonetto, S.M.R.; Mosca, P.; Vagnon, F.; Ferrero, A.M. In situ block size distribution aimed at the choice of the design block for rockfall barriers design: A case study along gardesana road. Geosciences 2020, 10, 223. [Google Scholar] [CrossRef]
- Ramli, M.F.; Yusof, N.; Yusoff, M.K.; Juahir, H.; Shafri, H.Z.M. Lineament mapping and its application in landslide hazard assessment: A review. Bull. Eng. Geol. Environ. 2010, 69, 215–233. [Google Scholar] [CrossRef]
- Bonetto, S.; Mosca, P.; Vagnon, F.; Vianello, D. New application of open source data and Rock Engineering System for debris flow susceptibility analysis. J. Mt. Sci. 2021, 18, 3200–3217. [Google Scholar] [CrossRef]
- Vianello, D.; Vagnon, F.; Bonetto, S.; Mosca, P. Debris flow susceptibility mapping using the Rock Engineering System (RES) method: A case study. Landslides 2023, 20, 735–756. [Google Scholar] [CrossRef]
- Hudson, J.A. Rock Engineering Systems. Theory and Practice; Ellis Horwood: Chichester, UK, 1992. [Google Scholar]
- Servizio Geologico D’Italia. Carta Geologica d’Italia alla Scala 1:50.0000, F. 152-153 Bardonecchia; ISPRA: Roma, Italy, 1998. [Google Scholar]
- Servizio Geologico D’Italia. Carta Geologica d’Italia alla Scala 1:50.0000, F. 171 Cesana Torinese; ISPRA: Roma, Italy, 2020. [Google Scholar]
- Dal Piaz, G.V.; Bistacchi, A.; Massironi, M. Geological outline of the Alps. Epis. J. Int. Geosci. 2003, 26, 175–180. [Google Scholar]
- Agard, P.; Vidal, O.; Goffé, B. Interlayer and Si content of phengite in HP–LT carpholite-bearing metapelites. J. Metamorph. Geol. 2001, 19, 479–495. [Google Scholar] [CrossRef]
- Corno, A.; Groppo, C.; Borghi, A.; Mosca, P.; Gattiglio, M. To be or not to be Alpine: New petrological constraints on the metamorphism of the Chenaillet Ophiolite (Western Alps). J. Metamorph. Geol. 2023, 41, 745–765. [Google Scholar] [CrossRef]
- Gattiglio, M.; Ghignone, S.; Mosca, P. Geological setting of the Lyon-Turin cross-border section (Italian side). Acc. Sc. Torino Quaderni. 2022, 38, 151–170. [Google Scholar]
- Polino, R.; Monticelli, F.; Vaccaro, D. L’unità piemontese Chaberton-GrandHoche (Val Susa-Alpi Occidentali): Evoluzione litostratigrafica, assetto strutturale e rapporti con i complexi circostanti. Mem. Della Soc. Geol. Ital. 1983, 26, 489–498. [Google Scholar]
- Nyberg, B.; Nixon, C.W.; Sanderson, D.J. NetworkGT: A GIS tool for geometric and topological analysis of two-dimensional fracture networks. Geosphere 2018, 14, 1618–1634. [Google Scholar] [CrossRef]
- Sanderson, D.J.; Nixon, C.W. The use of topology in fracture network characterization. J. Struct. Geol. 2015, 72, 55–66. [Google Scholar] [CrossRef]
- Dershowitz, W.S.; Einstein, H.H. Characterizing rock joint geometry with joint system models. Rock Mech. Rock Eng. 1988, 21, 21–51. [Google Scholar] [CrossRef]
- Dershowitz, W.S.; Herda, H.H. Interpretation of fracture spacing and intensity. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, Santa Fe, Mexico, 3–5 June 1992; p. ARMA-92. [Google Scholar]
- Mauldon, M.; Dunne, W.M.; Rohrbaugh, M.B., Jr. Circular scanlines and circular windows: New tools for characterizing the geometry of fracture traces. J. Struct. Geol. 2001, 23, 247–258. [Google Scholar] [CrossRef]
- Rohrbaugh Jr, M.B.; Dunne, W.M.; Mauldon, M. Estimating fracture trace intensity, density, and mean length using circular scan lines and windows. AAPG Bull. 2002, 86, 2089–2104. [Google Scholar]
- Vianello, D. Defining the degree of fracturing in fault zones: Implications in the study of landslide susceptibility. Rend. Online Della Soc. Geol. Ital. 2023, 60, 72–77. [Google Scholar] [CrossRef]
- Hugman III, R.H.H.; Friedman, M. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. Am. Assoc. Pet. Geol. Bull. 1979, 63, 1478–1489. [Google Scholar]
- Corbett, K.; Friedman, M.; Spang, J. Fracture development and mechanical stratigraphy of Austin Chalk, Texas. AAPG Bull. 1987, 71, 17–28. [Google Scholar]
- Hanks, C.L.; Lorenz, J.; Teufel, L.; Krumhardt, A.P. Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, northeastern Brooks Range and North Slope subsurface, Alaska. AAPG Bull. 1997, 81, 1700–1720. [Google Scholar]
- Ferrill, D.A.; Morris, A.P. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bull. 2008, 92, 359–380. [Google Scholar] [CrossRef]
- Barbier, M.; Hamon, Y.; Callot, J.P.; Floquet, M.; Daniel, J.M. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Mar. Pet. Geol. 2012, 29, 50–67. [Google Scholar] [CrossRef]
- Ortega, O.J.; Gale, J.F.; Marrett, R. Quantifying diagenetic and stratigraphic controls on fracture intensity in platform carbonates: An example from the Sierra Madre Oriental, northeast Mexico. J. Struct. Geol. 2010, 32, 1943–1959. [Google Scholar] [CrossRef]
- Segall, P.; Pollard, D.D. Mechanics of discontinuous faults. J. Geophys. Res. Solid Earth 1980, 85, 4337–4350. [Google Scholar] [CrossRef]
- Cowie, P.A.; Shipton, Z.K. Fault tip displacement gradients and process zone dimensions. J. Struct. Geol. 1998, 20, 983–997. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Knipe, R.J.; Sanderson, D.J. Glossary of normal faults. J. Struct. Geol. 2000, 22, 291–305. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J.; Rotevatn, A. Relationships between fractures. J. Struct. Geol. 2018, 106, 41–53. [Google Scholar] [CrossRef]
- Pachell, M.A.; Evans, J.P. Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: The Gemini fault zone, Sierra Nevada, California. J. Struct. Geol. 2002, 24, 1903–1924. [Google Scholar] [CrossRef]
- Fossen, H.; Schultz, R.A.; Rundhovde, E.; Rotevatn, A.; Buckley, S.J. Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation. AAPG Bull. 2010, 94, 597–613. [Google Scholar] [CrossRef]
- Gudmundsson, A.; Simmenes, T.H.; Larsen, B.; Philipp, S.L. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. J. Struct. Geol. 2010, 32, 1643–1655. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Hobbs, D.W. The formation of tension joints in sedimentary rocks: An explanation. Geol. Mag. 1967, 104, 550–556. [Google Scholar] [CrossRef]
- McQuillan, H. Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting. AAPG Bull. 1973, 57, 2367–2385. [Google Scholar] [CrossRef]
- Jamison, W.R. Quantitative evaluation of fractures on Monkshood anticline, a detachment fold in the foothills of western Canada. AAPG Bull. 1997, 81, 1110–1132. [Google Scholar]
- Bergbauer, S.; Pollard, D.D. A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming. Geol. Soc. Am. Bull. 2004, 116, 294–307. [Google Scholar] [CrossRef]
- Awdal, A.H.; Braathen, A.; Wennberg, O.P.; Sherwani, G.H. The characteristics of fracture networks in the Shiranish formation of the Bina Bawi Anticline; comparison with the TaqTaq field, zagros, Kurdistan, NE Iraq. Pet. Geosci. 2013, 19, 139–155. [Google Scholar] [CrossRef]
- Procter, A.; Sanderson, D.J. Spatial and layer-controlled variability in fracture networks. J. Struct. Geol. 2018, 108, 52–65. [Google Scholar] [CrossRef]
- Lucca, A.; Storti, F.; Molli, G. Extensional fracture network attribute distribution in faulted thick sandstone strata: Compione Fault, Northern Apennines, Italy. J. Struct. Geol. 2020, 131, 103954. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vianello, D.; Bonetto, S.; Mosca, P. Characterization of the Fracture Network and Its Spatial Variability in Complex Faulted Zones: Implication in Landslide Susceptibility Analysis. Appl. Sci. 2023, 13, 12789. https://doi.org/10.3390/app132312789
Vianello D, Bonetto S, Mosca P. Characterization of the Fracture Network and Its Spatial Variability in Complex Faulted Zones: Implication in Landslide Susceptibility Analysis. Applied Sciences. 2023; 13(23):12789. https://doi.org/10.3390/app132312789
Chicago/Turabian StyleVianello, Davide, Sabrina Bonetto, and Pietro Mosca. 2023. "Characterization of the Fracture Network and Its Spatial Variability in Complex Faulted Zones: Implication in Landslide Susceptibility Analysis" Applied Sciences 13, no. 23: 12789. https://doi.org/10.3390/app132312789
APA StyleVianello, D., Bonetto, S., & Mosca, P. (2023). Characterization of the Fracture Network and Its Spatial Variability in Complex Faulted Zones: Implication in Landslide Susceptibility Analysis. Applied Sciences, 13(23), 12789. https://doi.org/10.3390/app132312789