Enhanced Temporal Knowledge Graph Completion via Learning High-Order Connectivity and Attribute Information
Abstract
:1. Introduction
- We emphasize the importance of attribute information and high-order connectivity in temporal knowledge graph completion, highlighting the complementary benefits of their combination.
- We propose the HCAE model based on the limitations of existing work, aiming to utilize attribute information and higher-order structural information to improve the model’s prediction of unknown facts.
- The experimental results on three real-world datasets demonstrate that HCAE improves the predicting ability for missing facts, indicating that learning high-order connectivity and attribute information enhances the model’s TKGC capability.
2. Related Works
2.1. Static Knowledge Graph Completion
2.2. Temporal Knowledge Graph Completion
3. Proposed Model
3.1. Problem Formulation
- Entity prediction: given or , predict the missing subject or object entity at t moment.
- Relation prediction: given , predict the missing relationship at the t moment.
3.2. Overall Structure
3.3. Attribute Embedding Layer
3.4. Embedding Propagation Layer
3.5. Temporal Encoding Layer
3.6. Decoder
3.7. Optimization
3.8. Applications
4. Experimentation
4.1. Datasets
4.2. Baselines
- TransE [18] learns low-dimensional embeddings by translating entity and relationship vectors, achieving KGC tasks.
- DistMult [23] learns entity and relationship representations by using the inner product of entity and relationship triplets.
- ComplEx [24] represents entities and relationships as complex-valued embeddings and utilizes complex-valued inner products to capture symmetric/antisymmetric relationships, thereby improving KG link prediction performance.
- R-GCN [26] effectively captures complex relationships and contextual information between nodes.
- TTransE [31] innovatively embeds spatiotemporal information into KG, which provides richer contextual information for entity and relationship representation.
- TA-DistMult [36] is the first approach to introduce a time-sensitive attention mechanism in the TKGC task, which can enhance the presentation of relations across time.
- ChronoR [33], in which the representations of the relationship and timestamp are concatenated and applied as a rotation vector to the entity, enabling the temporal representation of the relationship to possess time dependency.
- TNTComplEx [34] decomposes the KG fourth-order tensor into material and non-temporal components and then specializes in learning the earthly manifestation of relations to achieve dynamic completion of KG.
- TeMP [37], in which, using message passing GNN, the structured representation of each entity at each time step is learned. The dynamic entity representation is obtained by aggregating all of the representations through an encoder.
- MtGCN [13] uses GCN to mine latent semantic information in TKG. GRU explicitly models historical information at different scales and uses the generated valid entity and relationship representations to complete TKGC.
- BoxTE [47] introduces dedicated time embedding representations, enabling the relationship representation at each time point to be unique and highly expressive.
- RoAN [41] directly encodes relationships and captures their temporal characteristics through a multi-chain structure and relationship attention mechanism.
- TASTER [35] learns global and local TKG embeddings using a sparse transition matrix, considering global statistics and local temporal evolution information.
- RotateQVS [48] represents entities and relationships in a quaternion vector space, utilizing rotation to represent the temporal evolution of relationships while also considering patterns such as symmetry and antisymmetry in relationships.
4.3. Evaluation Metrics
4.4. Implementation and Hyperparameters
4.5. Experimental Results
4.5.1. Comparison Experiment
4.5.2. Model Robustness Analysis
4.5.3. Parameter Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Li, M.; Wang, X.; Parulian, N.; Han, G.; Ma, J.; Tu, J.; Lin, Y.; Zhang, H.; Liu, W.; et al. COVID-19 literature knowledge graph construction and drug repurposing report generation. arXiv 2020, arXiv:2007.00576. [Google Scholar]
- Yang, Y.; Huang, C.; Xia, L.; Li, C. Knowledge graph contrastive learning for recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 1434–1443. [Google Scholar]
- Reinanda, R.; Meij, E.; de Rijke, M. Knowledge graphs: An information retrieval perspective. Found. Trends Inf. Retr. 2020, 14, 289–444. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, J.; Xu, H.; Fu, L. Temporal knowledge graph reasoning with historical contrastive learning. Proc. AAAI Conf. Artif. Intell. 2023, 37, 4765–4773. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, M.; Chen, J.; Qu, T.; Huang, G.Q. Digital twin-enabled dynamic spatial-temporal knowledge graph for production logistics resource allocation. Comput. Ind. Eng. 2022, 171, 108454. [Google Scholar] [CrossRef]
- Saxena, A.; Chakrabarti, S.; Talukdar, P. Question answering over temporal knowledge graphs. arXiv 2021, arXiv:2106.01515. [Google Scholar]
- Feng, F.; He, X.; Wang, X.; Luo, C.; Liu, Y.; Chua, T.S. Temporal relational ranking for stock prediction. ACM Trans. Inf. Syst. (TOIS) 2019, 37, 1–30. [Google Scholar] [CrossRef]
- Cai, B.; Xiang, Y.; Gao, L.; Zhang, H.; Li, Y.; Li, J. Temporal knowledge graph completion: A survey. arXiv 2022, arXiv:2201.08236. [Google Scholar]
- Shao, P.; Zhang, D.; Yang, G.; Tao, J.; Che, F.; Liu, T. Tucker decomposition-based temporal knowledge graph completion. Knowl.-Based Syst. 2022, 238, 107841. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Chen, X.; Lei, J.; Lai, X. 3drte: 3d rotation embedding in temporal knowledge graph. IEEE Access 2020, 8, 207515–207523. [Google Scholar] [CrossRef]
- Goel, R.; Kazemi, S.M.; Brubaker, M.; Poupart, P. Diachronic embedding for temporal knowledge graph completion. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3988–3995. [Google Scholar] [CrossRef]
- Jung, J.; Jung, J.; Kang, U. Learning to walk across time for interpretable temporal knowledge graph completion. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 786–795. [Google Scholar]
- Peng, C.C.; Shi, X.; Yu, R.; Ma, C.; Wu, L.; Zhang, D. Multi-timescale History Modeling for Temporal Knowledge Graph Completion. In Proceedings of the 2022 18th International Conference on Mobility, Sensing and Networking (MSN), Guangzhou, China, 14–16 December 2022; pp. 477–484. [Google Scholar]
- Toutanova, K.; Lin, X.V.; Yih, W.T.; Poon, H.; Quirk, C. Compositional learning of embeddings for relation paths in knowledge base and text. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp. 1434–1444. [Google Scholar]
- Sun, Z.; Hu, W.; Li, C. Cross-lingual entity alignment via joint attribute-preserving embedding. In Proceedings of the Semantic Web–ISWC 2017: 16th International Semantic Web Conference, Vienna, Austria, 21–25 October 2017; Proceedings, Part I 16. Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 628–644. [Google Scholar]
- Fatemi, B.; Ravanbakhsh, S.; Poole, D. Improved knowledge graph embedding using background taxonomic information. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3526–3533. [Google Scholar] [CrossRef]
- An, B.; Chen, B.; Han, X.; Sun, L. Accurate text-enhanced knowledge graph representation learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 745–755. [Google Scholar]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795. [Google Scholar]
- Sun, Z.; Deng, Z.H.; Nie, J.Y.; Tang, J. Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv 2019, arXiv:1902.10197. [Google Scholar]
- Yu, R.; Liu, T.; Yu, J.; Zhang, W.; Zhao, Y.; Yang, M.; Zhao, M.; Guo, J. Combination of Translation and Rotation in Dual Quaternion Space for Temporal Knowledge Graph Completion. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–8. [Google Scholar]
- Wang, S.; Wei, X.; Nogueira dos Santos, C.N.; Wang, Z.; Nallapati, R.; Arnold, A.; Xiang, B.; Yu, P.S.; Cruz, I.F. Mixed-curvature multi-relational graph neural network for knowledge graph completion. Proc. Web Conf. 2021, 2021, 1761–1771. [Google Scholar]
- Nickel, M.; Tresp, V.; Kriegel, H.P. A three-way model for collective learning on multi-relational data. ICML 2011, 11, 3104482–3104584. [Google Scholar]
- Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and inference in knowledge bases. arXiv 2014, arXiv:1412.6575. [Google Scholar]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2071–2080. [Google Scholar]
- Cao, Z.; Xu, Q.; Yang, Z.; Cao, X.; Huang, Q. Geometry interaction knowledge graph embeddings. Proc. AAAI Conf. Artif. Intell. 2022, 36, 5521–5529. [Google Scholar] [CrossRef]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional networks. In Proceedings of the Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Greece, 3–7 June 2018; Proceedings 15. Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 593–607. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI’18: AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 1811–1818. [Google Scholar]
- Lin, Q.; Mao, R.; Liu, J.; Xu, F.; Cambria, E. Fusing topology contexts and logical rules in language models for knowledge graph completion. Inf. Fusion 2023, 90, 253–264. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, N.; Li, L.; Deng, S.; Tan, C.; Xu, C.; Huang, F.; Si, L.; Chen, H. Hybrid transformer with multi-level fusion for multimodal knowledge graph completion. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 904–915. [Google Scholar]
- Tan, Z.; Chen, Z.; Feng, S.; Zhang, Q.; Zheng, Q.; Li, J.; Luo, M. KRACL: Contrastive learning with graph context modeling for sparse knowledge graph completion. Proc. ACM Web Conf. 2023, 2023, 2548–2559. [Google Scholar]
- Leblay, J.; Chekol, M.W. Deriving validity time in knowledge graph. Companion Proc. Web Conf. 2018, 2018, 1771–1776. [Google Scholar]
- Yu, M.; Guo, J.; Yu, J.; Xu, T.; Zhao, M.; Liu, H.; Li, X.; Yu, R. TBDRI: Block decomposition based on relational interaction for temporal knowledge graph completion. Appl. Intell. 2023, 53, 5072–5084. [Google Scholar] [CrossRef]
- Sadeghian, A.; Armandpour, M.; Colas, A.; Wang, D.Z. Chronor: Rotation based temporal knowledge graph embedding. Proc. AAAI Conf. Artif. Intell. 2021, 35, 6471–6479. [Google Scholar] [CrossRef]
- Lacroix, T.; Obozinski, G.; Usunier, N. Tensor decompositions for temporal knowledge base completion. arXiv 2020, arXiv:2004.04926. [Google Scholar]
- Wang, X.; Lyu, S.; Wang, X.; Wu, X.; Chen, H. Temporal knowledge graph embedding via sparse transfer matrix. Inf. Sci. 2023, 623, 56–69. [Google Scholar] [CrossRef]
- García-Durán, A.; Dumančić, S.; Niepert, M. Learning sequence encoders for temporal knowledge graph completion. arXiv 2018, arXiv:1809.03202. [Google Scholar]
- Wu, J.; Cao, M.; Cheung, J.C.K.; Hamilton, W.L. Temp: Temporal message passing for temporal knowledge graph completion. arXiv 2020, arXiv:2010.03526. [Google Scholar]
- Bai, L.; Zhang, M.; Zhang, H.; Zhang, H. FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism. World Wide Web 2023, 26, 1243–1270. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, B.; Ren, H. Each snapshot to each space: Space adaptation for temporal knowledge graph completion. In International Semantic Web Conference; Springer International Publishing: Cham, Switzerland, 2022; pp. 248–266. [Google Scholar]
- Wang, Z.; Du, H.; Yao, Q.; Li, X. Search to Pass Messages for Temporal Knowledge Graph Completion. arXiv 2022, arXiv:2210.16740. [Google Scholar]
- Bai, L.; Ma, X.; Meng, X.; Ren, X.; Ke, Y. RoAN: A relation-oriented attention network for temporal knowledge graph completion. Eng. Appl. Artif. Intell. 2023, 123, 106308. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, F.; Jin, H. Exkgr: Explainable multi-hop reasoning for evolving knowledge graph. In International Conference on Database Systems for Advanced Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 153–161. [Google Scholar]
- Ding, Z.; Ma, Y.; He, B.; Tresp, V. A simple but powerful graph encoder for temporal knowledge graph completion. arXiv 2022, arXiv:2112.07791. [Google Scholar]
- Chinnasamy, P.; Sathya, K.B.S.; Jebamani, B.J.A.; Nithyasri, A.; Fowjiya, S. Deep Learning: Algorithms, Techniques, and Applications—A Systematic Survey. In Deep Learning Research Applications for Natural Language Processing; IGI Global: Hershey, PA, USA, 2023; pp. 1–17. [Google Scholar]
- Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; Zhou, B. End-to-end structure-aware convolutional networks for knowledge base completion. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3060–3067. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.; Dai, H.; Wang, Y.; Song, L. Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In Proceedings of the ICML’17: Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3462–3471. [Google Scholar]
- Messner, J.; Abboud, R.; Ceylan, I.I. Temporal knowledge graph completion using box embeddings. Proc. AAAI Conf. Artif. Intell. 2022, 36, 7779–7787. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Li, Y.; Li, A. Rotateqvs: Representing temporal information as rotations in quaternion vector space for temporal knowledge graph completion. arXiv 2022, arXiv:2203.07993. [Google Scholar]
Symbol | Description |
---|---|
The temporal knowledge graph | |
The embedding vector of subject entity S, relation r, object entity O, attribute v | |
d | The dimension of the representation |
The set of relation quadruple, attribute quadruple | |
The set of entities | |
The set of relations | |
The set of attribute values | |
The set of timestamps | |
t | Timestamp scalar |
k | The length of the time window |
The word embedding of the word at position i | |
The neighborhood of entity at timestamp t | |
The embedding of entity and updated embedding | |
The embedding of the entity in l-th layers | |
The learn-able linear transformation | |
The linear transformation of the j-th attention head | |
The temporal representation of short-term, mid-term and long-term history | |
The output of the temporal encoder | |
The number of entities | |
The length of short-term, mid-term and long-term history | |
The weight coefficients for three timescale histories | |
ω | The convolutional kernel matrix |
Dataset | Entities | Relations | Training | Validation | Test | Interval |
---|---|---|---|---|---|---|
GDELT | 7691 | 240 | 1,734,399 | 238,765 | 305,241 | 15 min |
ICEWS14 | 6869 | 230 | 74,845 | 8514 | 7371 | 24 h |
ICEWS05-15 | 10,094 | 251 | 368,868 | 46,302 | 46,159 | 24 h |
Models | GDELT | ICEWS14 | ICEWS05-15 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MRR | H@1 | H@3 | H@10 | MRR | H@1 | H@3 | H@10 | MRR | H@1 | H@3 | H@10 | |
TransE | 11.3 | 0.0 | 15.8 | 31.2 | 28.0 | 9.4 | - | 63.7 | 29.4 | 9.0 | - | 66.3 |
DistMult | 19.6 | 11.7 | 20.8 | 34.8 | 43.9 | 32.3 | - | 67.2 | 45.6 | 33. 7 | - | 69.7 |
ComplEx | 22.8 | 15.8 | 24.0 | 36.3 | 24.5 | 16.1 | 27.5 | 41.1 | - | - | - | - |
R-GCN | 23.3 | 17.2 | 25.0 | 34.4 | 26.3 | 18.2 | 30.4 | 45.3 | - | - | - | - |
TTransE | 11.5 | 0.0 | 16.0 | 31.8 | 25.5 | 7.4 | - | 60.1 | 27.1 | 8.4 | - | 61.6 |
TA-DistMult | 20.6 | 12.4 | 21.9 | 36.5 | 47.7 | 36.3 | - | 68.6 | 47.4 | 34.6 | - | 72.8 |
ChronoR(a) | - | - | - | - | 59.4 | 49.6 | 65.4 | 77.3 | 68.4 | 61.1 | 73.0 | 82.1 |
ChronoR(b) | - | - | - | - | 62.5 | 54.7 | 66.9 | 77.3 | 67.5 | 59.6 | 72.3 | 82.0 |
TNTComplEx | - | - | - | - | 62.0 | 52.0 | 66.0 | 76.0 | 67.0 | 59.0 | 71.0 | 81.0 |
TeMP-SA | 23.2 | 15.2 | 24.5 | 37.7 | 60.7 | 48.4 | 68.4 | 84.0 | 68.0 | 55.3 | 76.9 | 91.3 |
TeMP-GRU | 27.5 | 19.1 | 29.7 | 43.7 | 60.1 | 47.8 | 68.1 | 82.5 | 69.1 | 56.6 | 78.2 | 91.7 |
MtGCN | 23.4 | 14.7 | 25.9 | 40.7 | 35.0 | 25.8 | 38.9 | 53.0 | - | - | - | - |
BoxTE | 35.2 | 26.9 | 37.7 | 51.1 | 61.3 | 52.8 | 66.4 | 76.3 | 66.7 | 58.2 | 71.9 | 82.0 |
RoAN-DES | 29.0 | 18.7 | 31.5 | 49.6 | 58.8 | 47.6 | 66.1 | 78.8 | 59.9 | 47.9 | 67.9 | 82.3 |
RotateQVS | 27.0 | 17.5 | 29.3 | 45.8 | 59.1 | 50.7 | 64.2 | 75.4 | 63.3 | 52.9 | 70.9 | 81.3 |
TASTER | - | - | - | - | 61.1 | 52.7 | - | 76.7 | 65.4 | 56.2 | - | 81.8 |
HCAE | 36.1 | 27.3 | 39.6 | 54.0 | 62.1 | 54.9 | 68.7 | 83.7 | 71.2 | 62.5 | 78.4 | 91.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, M.; Mei, H.; Wang, W.; Zhang, X. Enhanced Temporal Knowledge Graph Completion via Learning High-Order Connectivity and Attribute Information. Appl. Sci. 2023, 13, 12392. https://doi.org/10.3390/app132212392
Wen M, Mei H, Wang W, Zhang X. Enhanced Temporal Knowledge Graph Completion via Learning High-Order Connectivity and Attribute Information. Applied Sciences. 2023; 13(22):12392. https://doi.org/10.3390/app132212392
Chicago/Turabian StyleWen, Minwei, Hongyan Mei, Wei Wang, and Xing Zhang. 2023. "Enhanced Temporal Knowledge Graph Completion via Learning High-Order Connectivity and Attribute Information" Applied Sciences 13, no. 22: 12392. https://doi.org/10.3390/app132212392
APA StyleWen, M., Mei, H., Wang, W., & Zhang, X. (2023). Enhanced Temporal Knowledge Graph Completion via Learning High-Order Connectivity and Attribute Information. Applied Sciences, 13(22), 12392. https://doi.org/10.3390/app132212392