Digital Twin-Based Vibration Monitoring of Plant Factory Transplanting Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. DT Application Requirements Analysis
2.2. AD-Based Development of Application-Based Deployment Solutions
2.2.1. Development of a Deployment Solution Based on the DT and Its Integration with the AD Theory
- (1)
- Requirements domain: It refers to the expression of user requirements for a product, as well as the product attributes. For the design of a digital twin transplantation machine, the requirement domain involves utilizing digital twin technology to construct a virtual entity that can monitor and provide real-time feedback on the operational status of the transplantation machine.
- (2)
- Functional domain: It pertains to the product’s functional requirements determined based on user needs. The functional requirements for the design of a digital twin transplantation machine involve meeting the requirements for vibration monitoring and optimal operational condition assessment.
- (3)
- Physical domain: It encompasses the design parameters aimed at fulfilling the functional requirements. The physical domain parameters for the design of a digital twin transplantation machine include vibration information, rotational speed information, timing information, and so on.
- (4)
- Process domain: It refers to the process variables established based on the design parameters. In this study, the process domain can be considered the deployment and implementation plan for the design elements within the physical domain.
2.2.2. Implementation Strategy for Optimal Deployment Scheme Development Based on the Digital Twin
2.3. Vibration Energy Power Spectrum Density Analysis Method
2.4. Transplanter Condition Settings and Dataset Description
2.5. DT-Based PFT Model
3. Results and Discussion
3.1. Analyzing Different Sensor Solutions for the Deployment of AD Applications
3.2. Comparative Analysis of Working Conditions for Plant Transplanting Equipment Using Data-Driven Methods
3.3. Comparison of the Power Spectral Density of Modal Vibrations When Using Different Operating Conditions for Transplanting Equipment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Yang, X.; Li, T.; Gan, R.; Wang, Z.; Peng, J.; Hu, J.; Guo, J.; Zhang, Y.; Li, Q.; et al. Plant factory technology lights up urban horticulture in the post-coronavirus world. Hortic. Res. 2022, 9, uhac018. [Google Scholar] [CrossRef] [PubMed]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Liu, Y.; Mousavi, S.; Pang, Z.; Ni, Z.; Karlsson, M.; Gong, S. Plant Factory: A New Playground of Industrial Communication and Computing. Sensors 2022, 22, 147. [Google Scholar] [CrossRef]
- Ebrahimi, A. Challenges of developing a digital twin model of renewable energy. In Proceedings of the 28th IEEE International Symposium on Industrial Electronics (IEEE-ISIE), Vancouver, BC, Canada, 2–14 June 2019. [Google Scholar]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Cheng, J.; Qi, Q. Digital twin workshop: A new paradigm for future workshops. Comput. Integr. Manuf. Syst. 2017, 23, 1–9. [Google Scholar]
- Riveros, L.F.R.; Bernal Tristancho, V.H.B.; Sanabria, J.E.S.; Vasquez Amado, H.D.V. Digital Twins, Didactic Strategy for Teaching Industrial Automation. In Proceedings of the 15th International Conference of Technology, Learning and Teaching of Electronics (TAEE), Málaga, Spain, 29 June–1 July 2022. [Google Scholar]
- Ritto, T.G.; Rochinha, F.A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 2021, 155, 107614. [Google Scholar] [CrossRef]
- Luo, W.; Hu, T.; Zhu, W.; Tao, F. Digital Twin modeling method for CNC machine tool. In Proceedings of the 15th IEEE International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018. [Google Scholar]
- Fang, X.; Wang, H.; Liu, G.; Tian, X.; Ding, G.; Zhang, H. Industry application of digital twin: From concept to implementation. Int. J. Adv. Manuf. Technol. 2022, 121, 4289–4312. [Google Scholar] [CrossRef]
- Rong, K.; Ding, H.; Kong, X.; Huang, R.; Tang, J. Digital twin modeling for loaded contact pattern-based grinding of spiral bevel gears. Adv. Eng. Inform. 2021, 49, 101305. [Google Scholar] [CrossRef]
- Yun, J.; Liu, Y.; Liu, X. Model Construction of Multi-target Grasping Robot Based on Digital Twin. In Smart Robotics for Society, Proceeding of the 15th International Conference on Intelligent Robotics and Applications (ICIRA), Hangzhou, China, 5–7 July 2022; Liu, H., Yin, Z., Liu, L., Jiang, L., Gu, G., Wu, X., Ren, W., Eds.; ICIRA: Hangzhou, China, 2023; Volume 13456, Part II; pp. 88–97. [Google Scholar]
- Liu, S.; Bao, J.; Lu, Y.; Li, J.; Lu, S.; Sun, X. Digital twin modeling method based on biomimicry for machining aerospace components. J. Manuf. Syst. 2021, 58, 180–195. [Google Scholar] [CrossRef]
- Smarsly, K.; Dragos, K.; Kolzer, T. Sensor-integrated digital twins for wireless structural health monitoring of civil infrastructure. Bautechnik 2022, 99, 471–476. [Google Scholar] [CrossRef]
- Luo, W.; Hu, T.; Zhang, C.; Wei, Y. Digital twin for CNC machine tool: Modeling and using strategy. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1129–1140. [Google Scholar] [CrossRef]
- Kapteyn, M.G.; Willcox, K.E. Design of Digital Twin Sensing Strategies Via Predictive Modeling and Interpretable Machine Learning. J. Mech. Des. 2022, 144, 4054907. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, C.; Sun, J.; Liu, F.; Li, H. Functional model construction method based on digital twin for intelligent products. Comput. Integr. Manuf. Syst. 2019, 25, 1392–1404. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Du, H.-X.; Wang, H.-F.; Liu, T.-Y. Construction and application of digital twin system for production process in workshop [Construction and application of digital twin system for production process in workshop. Comput. Integr. Manuf. Syst. 2019, 25, 1536–1545. [Google Scholar] [CrossRef]
- Zhang, Q. Research on Digital Twin Stamping Production Line Modeling Method Based on Physical Data. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2018. Available online: https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMzAxMTISCUQwMTY4MjY4MhoIYmN1MmR4a3o%3D (accessed on 18 January 2018).
- Huang, J.-S.; Shi, J.-H.; Yi, Y.; Xu, H.-X.; Yan, Y.-H.; Liu, J.-F.; Liu, X.-J. Digital twin synchronization method and system implementation for micro-assembly. Comput. Integr. Manuf. Syst. 2021, 27, 412–422. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, T.; Rong, Y.; Ma, Y.; Ahmad, R. Feature-based modeling for industrial processes in the context of digital twins: A case study of HVOF process. Adv. Eng. Inform. 2022, 51, 101486. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; He, J.; Li, Z.; Cheng, W. A data- and knowledge-driven framework for digital twin manufacturing cell. Procedia CIRP 2019, 83, 345–350. [Google Scholar] [CrossRef]
- Shabani, A.; Skamantzari, M.; Tapinaki, S.; Georgopoulos, A.; Plevris, V.; Kioumarsi, M. 3D simulation models for developing digital twins of heritage structures: Challenges and strategies. Procedia Struct. Integr. 2022, 37, 314–320. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, W.; Liu, J.; Liu, Z.; Zhou, Z.; Truong, P.D. A Reconfigurable Modeling Approach for Digital Twin-based Manufacturing System. Procedia CIRP 2019, 83, 118–125. [Google Scholar] [CrossRef]
- Li, W.; Zhu, D.; Wang, Q.; Zeng, S. Research review on crop digital twin system for monitoring growth status and environmental response. J. Agric. Sci. Technol. 2022, 24, 90–105. [Google Scholar] [CrossRef]
- Greis, N.P.; Nogueira, M.L.; Rohde, W. Towards Learning-Enabled Digital Twin with Augmented Reality for Resilient Production Scheduling. In Proceedings of the 10th IFAC Triennial Conference on Manufacturing Modelling, Management and Control (MIM), Nantes, France, 22–24 June 2022; Volume 55, pp. 1912–1917. [Google Scholar]
- Moser, A.; Appl, C.; Bruening, S.; Hass, V.C. Mechanistic Mathematical Models as a Basis for Digital Twins. In Digital Twins; Herwig, C., Portner, R., Moller, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 176, pp. 133–180. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, W.; Zhang, C.; Yang, C.; Chu, H. Data Super-Network Fault Prediction Model and Maintenance Strategy for Mechanical Product Based on Digital Twin. IEEE Access 2019, 7, 177284–177296. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, S.; Baigang, D.; Guo, J.; Li, Y.; Wang, L.; Zha, D.; Zhang, F.; Yu, L. Key technologies and application of integrated operation and maintenance platform for digital twin water treatment plant. Manuf. Syst. 2021, 27, 432–444. [Google Scholar]
- Taylor, C.; Pretzner, B.; Zahel, T.; Herwig, C. Architectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time Applications. Bioengineering 2022, 9, 534. [Google Scholar] [CrossRef] [PubMed]
Working Condition Serial Number | Operating Status | Type of Data | Collection Frequency |
---|---|---|---|
1 | Standby, start | Vibration D1 | 2560 Hz |
Transverse motor power D2 | 50 Hz | ||
Longitudinal motor power D3 | 50 Hz | ||
Parallel motor power D4 | 50 Hz | ||
2 | Low-speed transplanting 1500 plants/h | Vibration D1 | 2560 Hz |
Transverse motor power D2 | 50 Hz | ||
Longitudinal motor power D3 | 50 Hz | ||
Parallel motor power D4 | 50 Hz | ||
3 | Medium-speed transplanting 3000 plants/h | Vibration D1 | 2560 Hz |
Transverse motor power D2 | 50 Hz | ||
Longitudinal motor power D3 | 50 Hz | ||
Parallel motor power D4 | 50 Hz | ||
4 | High-speed transplanting 4500 plants/h | Vibration D1 | 2560 Hz |
Transverse motor power D2 | 50 Hz | ||
Longitudinal motor power D3 | 50 Hz | ||
Parallel motor power D4 | 50 Hz |
Sensor Type, Mounting Position, and Number | ||||||||
---|---|---|---|---|---|---|---|---|
S-1 Unidirectional Accelerometers | Amount | S-2 Three-Axis Accelerometers | Amount | S-3 Infrared Sensors | Amount | S-4 Vision Sensors | Amount | |
Sc-1 | / | 0 | M-1 | 6 | M-3 | 6 | M-2 | 3 |
Sc-2 | / | 0 | M-1 | 4 | M-3 | 6 | M-2 | 3 |
Sc-3 | M-1 | 12 | / | 0 | M-3 | 6 | M-2 | 3 |
Technical Specifications | Economic Indicators | Social Indicators | |||||
---|---|---|---|---|---|---|---|
Accuracy (Deviation) | Measuring Range (Hz) | Material Cost (Yuan) | Installation Cost (Yuan) | Safety | Operation | ||
Sc-1 | EI 1i | 0.005 | [0.500~8000.000] | 7200.000 | 900.000 | 0.900 | 0.900 |
ES 1i | [0.400~0.400] | [0, 0.800] | [1.000~1.000] | [0.875~0.875] | [1.000~1.000] | [1.000~1.000] | |
Sc-2 | EI 2i | 0.005 | [0.500~8000.000] | 4100.000 | 900.000 | 0.900 | 0.700 |
ES 2i | [0.400~0.400] | [0, 0.800] | [1.000~1.000] | [1.000~1.000] | [0.778~0.778] | [0.778~0.778] | |
Sc-3 | EI 3i | 0.002 | [0~10,000.000] | 9100.000 | 2100.000 | 0.700 | 0.600 |
ES 3i | [1.000~1.000] | [0, 1.000] | [0.624~0.624] | [0.333~0.333] | [0.667~0.667] | [0.445~0.445] | |
DI | [1.000~1.000] | [0, 1.000] | [1.000~1.000] | [1.000~1.000] | [1.000~1.000] | [1.000~1.000] |
Indicator Sets | Weight Value | Subset of Indicators | Weight Value | Total Weight Value | Factor Value | Information Content | ||||
---|---|---|---|---|---|---|---|---|---|---|
Sc-1 | Sc-2 | Sc-3 | Sc-1 | Sc-2 | Sc-3 | |||||
Technical indicators | 0.207 | Accuracy | 0.885 | 0.183 | 0.400 | 0.400 | 1.000 | 0.866 | 0.866 | 0 |
Measurement range | 0.115 | 0.024 | 0.859 | 0.859 | 1.000 | 0.204 | 0.204 | 0 | ||
Economic indicators | 0.343 | Material cost | 0.500 | 0.172 | 1.000 | 1.000 | 0.376 | 0 | 0 | 0.900 |
Installation costs | 0.500 | 0.172 | 0.875 | 1.000 | 0.667 | 0.180 | 0 | 0.480 | ||
Social indicators | 0.450 | Safety | 0.692 | 0.311 | 1.000 | 0.778 | 0.667 | 0 | 0.320 | 0.480 |
Operation | 0.308 | 0.138 | 1.000 | 0.778 | 0.445 | 0 | 0.320 | 0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Zhao, B.; Zhang, Y.; Zhou, L.; Niu, K.; Jin, X.; Xu, B.; Yuan, Y.; Zheng, Y. Digital Twin-Based Vibration Monitoring of Plant Factory Transplanting Machine. Appl. Sci. 2023, 13, 12162. https://doi.org/10.3390/app132212162
Chen K, Zhao B, Zhang Y, Zhou L, Niu K, Jin X, Xu B, Yuan Y, Zheng Y. Digital Twin-Based Vibration Monitoring of Plant Factory Transplanting Machine. Applied Sciences. 2023; 13(22):12162. https://doi.org/10.3390/app132212162
Chicago/Turabian StyleChen, Kaikang, Bo Zhao, Yanli Zhang, Liming Zhou, Kang Niu, Xin Jin, Bingbing Xu, Yanwei Yuan, and Yongjun Zheng. 2023. "Digital Twin-Based Vibration Monitoring of Plant Factory Transplanting Machine" Applied Sciences 13, no. 22: 12162. https://doi.org/10.3390/app132212162
APA StyleChen, K., Zhao, B., Zhang, Y., Zhou, L., Niu, K., Jin, X., Xu, B., Yuan, Y., & Zheng, Y. (2023). Digital Twin-Based Vibration Monitoring of Plant Factory Transplanting Machine. Applied Sciences, 13(22), 12162. https://doi.org/10.3390/app132212162