Thermodynamics of Chemical Hydrogen Storage: Are Sterically Hindered and Overcrowded Molecules More Effective?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Vapour Pressures and Vaporisation/Sublimation Enthalpies of Alkylbenzenes
Compound | M a | T-Range | Ref. | ||
---|---|---|---|---|---|
CAS | K | kJ·mol−1 | kJ·mol−1 | ||
iso-propylbenzene | 45.2 ± 0.2 | [20] | |||
2-methyl-iso-propylbenzene | E | 354.3–452.9 | 43.7 ± 1.0 | 49.0 ± 1.5 | [21] |
527-84-4 | n/a | 50.6 ± 1.0 | [22] | ||
Hsol | 48.2 ± 1.0 | Table 6 | |||
49.3 ± 0.6 c | |||||
3-methyl-iso-propylbenzene | E | 351.9–449.5 | 43.7 ± 1.0 | 48.9 ± 1.4 | [21] |
535-77-3 | n/a | 50.0 ± 1.0 | [22] | ||
Hsol | 49.2 ± 1.0 | Table 6 | |||
49.4 ± 0.6 c | |||||
4-methyl-iso-propylbenzene | E | 401.4–451.5 | 42.8 ± 1.0 | 49.2 ± 1.6 | [21] |
99-87-6 | n/a | 50.3 ± 1.0 | [22] | ||
n/a | 48.9 ± 1.0 | [23] | |||
CGC | 49.2 ± 1.0 | [24] | |||
Hsol | 50.0 ± 1.0 | Table 6 | |||
49.6 ± 0.5 c | |||||
1,2-di-iso-propylbenzene | E | 388.6–476.9 | 47.4 ± 1.0 | 54.8 ± 1.8 | [25] |
577-55-9 | BP | 350.2–477.2 | 48.3 ± 1.3 | 54.6 ± 1.8 | Table S4 |
Jx | 55.8 ± 1.0 | Table 5 | |||
Hsol | 54.8 ± 1.0 | Table 6 | |||
54.9 ± 0.7 c | |||||
1,3-di-iso-propylbenzene | E | 388.1–476.3 | 47.4 ± 1.0 | 54.7 ± 1.8 | [25] |
99-62-7 | T | 283.5–318.5 | 56.1 ± 1.5 | 56.2 ± 1.6 | [9] |
Jx | 55.4 ± 1.0 | Table S4 | |||
Jx | 54.3 ± 1.0 | Table 5 | |||
Hsol | 55.8 ± 1.0 | Table 6 | |||
55.2 ± 0.6 c | |||||
1,4-di-iso-propylbenzene | E | 393.4–483.5 | 47.7 ± 1.0 | 55.2 ± 1.8 | [25] |
100-18-5 | E | 328.7–483.7 | 50.7 ± 1.0 | 56.3 ± 1.5 | [26] |
E | 393.4–484.7 | 47.4 ± 1.0 | 55.3 ± 1.9 | [21] | |
T | 283.7–318.3 | 56.4 ± 0.6 | 56.5 ± 0.7 | [9] | |
E | 365.5–529.9 | 47.7 ± 0.1 | 55.7 ± 1.6 | [27] | |
TFM | 328.7–675.9 | 48.0 ± 1.0 | 57.2 ± 2.1 | [28] | |
56.2 ± 0.5 c | |||||
1,2,4-tri-iso-propylbenzene | BP | 386–517 | 51.7 ± 1.1 | 64.2 ± 2.7 | Table S4 |
648-32-3 | Hsol | 64.7 ± 1.0 | Table 6 | ||
64.6 ± 1.1 c | |||||
1,2,3-tri-iso-propylbenzene | Hsol | 63.4 ± 1.0 | Table 6 | ||
2083-67-2 | |||||
1,3,5-tri-iso-propylbenzene | S | 283.0–388.1 | 62.7 ± 0.6 | 66.8 ± 1.0 | [29] |
717-74-8 | T | 283.6–323.3 | 64.3 ± 1.2 | 64.6 ± 1.3 | [9] |
Jx | 64.1 ± 1.0 | Table 5 | |||
Hsol | 65.5 ± 1.0 | Table 6 | |||
65.6 ± 0.6 c | |||||
1,2,4,5-tetra-iso-propylbenzene | E | 409.9–574.7 | 56.0 ± 0.1 | 69.7 ± 2.7 | [27] |
635-11-0 | Jx | 67.5 ± 1.0 | Table S5 | ||
68.3 ± 1.6 c |
Compound | M a | T-Range | Ref. | ||
---|---|---|---|---|---|
CAS | K | kJ·mol−1 | kJ·mol−1 | ||
tert-butylbenzene | 47.5 ± 0.4 | [12] | |||
2-methyl-tert-butylbenzene | Jx | 50.9 ± 1.0 | Table S6 | ||
1074-92-6 | Jx | 51.2 ± 1.0 | Table S7 | ||
51.1 ± 0.7 c | |||||
3-methyl-tert-butylbenzene | T | 274.4–318.5 | 51.0 ± 0.6 | 51.1 ± 0.6 | [12] |
1075-38-3 | Jx | 51.5 ± 1.0 | Table 5 | ||
Jx | 51.7 ± 1.0 | Table S6 | |||
Jx | 51.8 ± 1.0 | Table S7 | |||
51.4 ± 0.4 c | |||||
4-methyl-tert-butylbenzene | T | 273.5–322.9 | 52.2 ± 0.2 | 52.2 ± 0.2 | [12] |
98-51-1 | 52.6 ± 1.0 | Table 5 | |||
52.3 ± 0.3 c | |||||
3,5-di-methyl-tert-butylbezene | S | 253.4–442.9 | 54.9 ± 0.2 | 56.7 ± 0.4 | [29] |
98-19-1 | S | 273.7–442.9 | 53.4 ± 0.1 | 56.3 ± 0.7 | [31] |
T | 283.6–318.2 | 56.5 ± 1.2 | 56.7 ± 1.2 | [10] | |
56.6 ± 0.3 c | |||||
1,2-di-tert-butylbezene | Sx | 56.6 ± 1.5 | Table 7 | ||
1012-76-6 | |||||
1,3-di-tert-butylbezene | n/a | 346–374 | 58.0 ± 1.0 | 61.6 ± 1.2 | [32] |
1014-60-4 | T | 288.3–333.1 | 58.9 ± 1.0 | 59.6 ± 1.1 | [10] |
E | 412.7–498.5 | 49.0 ± 0.1 | 58.2 ± 1.8 | [33] | |
BP | 346.2–497.3 | 52.9 ± 1.9 | 59.6 ± 2.3 | Table S4 | |
Jx | 59.7 ± 1.0 | Table S7 | |||
Hsol | 58.8 ± 1.0 | Table 6 | |||
Sx | 59.0 ± 1.5 | Table 7 | |||
59.8 ± 0.5 c | |||||
1,4-di-tert-butylbezene | E | 377.0–510.0 | 52.1 ± 0.2 | 60.7 ± 1.7 | [34] |
1012-72-2 | S | 353.6–463.1 | 54.4 ± 0.2 | 60.6 ± 1.2 | [31] |
E | 389.4–517.5 | 51.8 ± 0.1 | 60.7 ± 1.8 | [33] | |
T | 354.2–383.3 | 56.3 ± 0.9 | 60.5 ± 1.2 | [35] | |
T | 354.2–383.3 | 56.3 ± 1.1 | 60.4 ± 1.3 | [12] | |
E | 350.0–510.4 | 53.8 ± 0.1 | 60.9 ± 1.6 | [36] | |
T | 351.2–384.5 | 56.2 ± 0.6 | 60.3 ± 1.0 | Table S1 | |
BP | 361.8–514.2 | 52.7 ± 1.1 | 60.9 ± 2.0 | Table S4 | |
Jx | 60.7 ± 1.0 | Table S6 | |||
Sx | 59.3 ± 1.5 | Table 7 | |||
60.5 ± 0.5 c | |||||
1-methyl-3,5-di- | T | 308.3–358.2 | 60.3 ± 0.4 | 62.5 ± 0.6 | [35] |
tert-butylbezene | E | 379.6–510.6 | 53.2 ± 0.2 | 62.9 ± 1.9 | [35] |
15181-11-0 | T | 308.9–338.3 | 61.1 ± 1.8 | 62.7 ± 1.9 | Table S1 |
BP | 410.2–511.2 | 51.6 ± 1.0 | 62.0 ± 2.3 | Table S4 | |
62.5 ± 0.5 c | |||||
1,3,5-tri-tert-butylbenzene | S | 343.5–462.7 | 60.9 ± 0.3 | 69.1 ± 1.7 | [31] |
1460-02-2 | E | 447.9–528.3 | 53.7 ± 0.2 | 69.0 ± 3.1 | [33] |
T | 352.2–382.7 | 63.1 ± 0.5 | 68.7 ± 1.2 | [35] | |
T | 348.6–388.7 | 63.3 ± 0.6 | 69.0 ± 1.3 | Table S1 | |
BP | 381.2–527.4 | 55.9 ± 1.3 | 68.5 ± 2.8 | Table S4 | |
Sx | 69.7 ± 1.5 | Table 7 | |||
69.0 ± 0.7 c | |||||
1,2,4-tri-tert-butylbenzene | Sx | 67.7 ± 1.5 | Table 7 | ||
1459-11-6 | |||||
1,2,3-tri-tert-butylbenzene | Sx | 64.8 ± 1.5 | Table 7 | ||
40782-34-1 | |||||
1,2,4,5-tetra-tert-butylbenzene | Sx | 73.6 ± 1.5 | Table 7 | ||
796-97-4 | |||||
1-iso-propyl-2-tert-butyl- | Hsol | 57.4 ± 1.0 | Table 6 | ||
benzene 20033-11-8 |
Compound | M a | T-Range | Ref. | ||
---|---|---|---|---|---|
CAS | K | kJ·mol−1 | kJ·mol−1 | ||
1,4-di-tert-butylbezene | S | 285.0–325.0 | 83.2 ± 1.5 | 83.4 ± 1.6 | [37] |
T | 288.2–333.2 | 82.2 ± 0.8 | 82.6 ± 0.9 | [10] | |
SC | 81.3 ± 2.0 | [38] | |||
T | 314.3–340.5 | 81.3 ± 0.8 | 82.3 ± 1.1 | Table S1 | |
PhT | 81.7 ± 0.6 | Table 4 | |||
82.1 ± 0.4 c | |||||
1-methyl-3,5-di- | T | 274.7–301.7 | 82.4 ± 1.0 | 81.9 ± 1.1 | [10] |
tert-butylbezene | SC | 81.8 ± 2.0 | [38] | ||
PhT | 80.7 ± 0.6 | Table 4 | |||
81.0 ± 0.5 c | |||||
1,3,5-tri-tert-butylbenzene | K | 273.2–315.2 | 79.8 ± 0.8 | 79.5 ± 0.9 | [39] |
T | 297.7–341.3 | 79.9 ± 0.6 | 81.2 ± 0.7 | [10] | |
SC | 82.7 ± 2.0 | [38] | |||
79.8 ± 0.8 | |||||
80.4 ± 0.4 c |
3.2. Consistency of Phase Transition Enthalpies of Alkylbenzenes
Compounds | Tfus, K | |||||
---|---|---|---|---|---|---|
WC b | 298.15 K | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
1,2,4,5-tetra-iso-propylbenzene | 393.0 | 19.6 ± 0.5 [27] | 49.9 | 18.8 ± 0.6 | 68.3 ± 1.6 f | 87.1 ± 1.7 |
1,4-di-tert-butylbezene | 350.8 | 22.5 ± 0.4 [34] | ||||
350.5 | 21.8 ± 0.2 [10] | |||||
350.5 | 22.6 ± 0.1 [36] | |||||
22.4 ± 0.1f | 63.9 | 21.2 ± 0.4 | 60.5 ± 0.5 | 81.7 ± 0.6 | ||
1-methyl-3,5-di-tert-butylbezene | 307.6 | 18.4 ± 0.2 [10] | 59.8 | 18.2 ± 0.3 | 62.5 ± 0.5 | 80.7 ± 0.6 |
1,3,5-tri-tert-butylbezene | 343.2 | 11.9 ± 0.2 [10] | 34.7 | 10.9 ± 0.4 | 69.0 ± 0.7 | 79.9 ± 0.8 |
52.1 ± 6.5f |
3.3. Validation of Vaporisation Enthalpies Using Structure–Property Relationships
3.3.1. Empirical Correlations: Vaporisation Enthalpies versus Kovats Retention Indices
Jxa | Δ d | |||
---|---|---|---|---|
Compound | kJ·mol−1 | kJ·mol−1 | kJ·mol−1 | |
iso-propylbenzene | 920 | 45.2 | 44.7 | 0.5 |
2-Me-iso-propylbenzene | 1032 | 49.3 | 50.0 | −0.7 |
3-Me-iso-propylbenzene | 1012 | 49.4 | 49.1 | 0.3 |
4-Me-iso-propylbenzene | 1018 | 49.6 | 49.4 | 0.2 |
1,2-di-iso-propylbenzene | 1152 | - | 55.8 | - |
1,3-di-iso-propylbenzene | 1143 | - | 55.4 | - |
1,4-di-iso-propylbenzene | 1162 | 56.2 | 56.3 | −0.1 |
1,3,5-tri-iso-propylbenzene | 1325 | - | 64.1 | - |
tert-butylbenzene | 988 | 47.5 | 47.9 | −0.4 |
tert-amylbenzene | 1086 | 52.3 | 52.6 | −0.3 |
3-Me-tert-butylbenzene | 1062 | - | 51.5 | - |
4-Me-tert-butylbenzene | 1085 | 52.2 | 52.6 | −0.4 |
3,5-di-Me-1-tert-butylbenzene | 1152 | 56.6 | 55.8 | 0.8 |
3.3.2. Empirical Correlations: Vaporisation Enthalpies versus Solution Enthalpies
Hsola | [20] | Δ c | ||
---|---|---|---|---|
Compound | kJ·mol−1 | kJ·mol−1 | kJ·mol−1 | |
benzene | 27.2 | 33.9 | 34.2 | −0.3 |
toluene | 31.2 | 38.1 | 37.8 | 0.3 |
ethyl-benzene | 36.4 | 42.3 | 42.5 | −0.2 |
n-propyl-benzene | 40.6 | 46.2 | 46.3 | −0.1 |
n-butyl-benzene | 47.0 | 51.4 | 52.1 | −0.7 |
tert-butyl-benzene | 41.3 | 47.5 d | 46.9 | 0.6 |
1,2-dimethyl-benzene | 36.3 | 43.5 | 42.4 | 1.1 |
1,3-dimethy-benzene | 37.0 | 42.4 | 43.0 | −0.6 |
1,4-dimethyl-benzene | 37.8 | 42.7 | 43.8 | −1.1 |
1,3,5-trimethyl-benzene | 41.4 | 47.5 | 47.0 | 0.5 |
2-Me-iso-propyl-benzene | 42.7 | 48.2 | ||
3-Me-iso-propyl-benzene | 43.8 | 49.2 | ||
4-Me-iso-propyl-benzene | 44.7 | 50.0 | ||
1,2-di-iso-propyl-benzene | 50.0 | 54.8 | ||
1,3-di-iso-propyl-benzene | 51.1 | 55.8 | ||
1,4-di-iso-propyl-benzene | 51.3 | 56.2 d | 56.0 | 0.2 |
1-iso-propyl-2-tert-butyl-benzene | 52.9 | 57.4 | ||
1-iso-propyl-3-tert-butyl-benzene | 53.1 | 57.6 | ||
1-iso-propyl-4-tert-butyl-benzene | 53.3 | 57.8 | ||
1,3-di-iso-propyl-benzene | 54.4 | 58.8 | ||
1,4-di-iso-propyl-benzene | 56.4 | 60.5 d | 60.6 | −0.1 |
1,3,5-trii-iso-propyl-benzene | 61.8 | 65.5 | ||
1,2,4-tri-iso-propyl-benzene | 61.0 | 64.7 | ||
1,2,3-tri-iso-propyl-benzene | 59.5 | 63.4 |
3.3.3. Empirical Correlations: Vaporisation Enthalpies versus Solvent-Accessible Surfaces
Sxa | Δ d | |||
---|---|---|---|---|
Compound | kJ·mol−1 | kJ·mol−1 | kJ·mol−1 | |
tert-butyl-benzene | 153.0 | 47.5 | 48.1 | −0.6 |
1,2-di-tert-butylbenzene | 201.6 | 56.6 | - | |
1,3-di-tert-butylbenzene | 214.9 | 59.0 | 59.0 | 0.0 |
1,4-di-tert-butylbenzene | 216.9 | 60.5 | 59.3 | 1.2 |
1,3,5-tri-tert-butylbenzene | 276.0 | 69.0 | 69.7 | −0.7 |
1,2,4-tri-tert-butylbenzene | 264.7 | 67.7 | - | |
1,2,3-tri-tert-butylbenzene | 248.2 | 64.8 | ||
1,2,4,5-tetra-tert-butylbenzene | 298.6 | 73.6 | - |
3.3.4. Experimental Enthalpies of Formation of Iso-Propyl- and Tert-Butyl-Benzenes
3.3.5. Quantum Chemistry: Theoretical Enthalpies of Formation of Iso-Propyl- and Tert-Butyl-Benzenes
3.3.6. Liquid-Phase Enthalpies of Formation and Thermodynamic Analysis of the Hydrogenation/Dehydrogenation of the Alkylbenzene-Based LOHC Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen Storage Technologies for Future Energy Systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Stark, K.; Emelyanenko, V.N.; Varfolomeev, M.A.; Zaitsau, D.H.; Shoifet, E.; Schick, C.; Verevkin, S.P.; Arlt, W. Liquid Organic Hydrogen Carriers: Thermophysical and Thermochemical Studies of Benzyl- and Dibenzyl-toluene Derivatives. Ind. Eng. Chem. Res. 2015, 54, 7967–7976. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Safronov, S.P.; Samarov, A.A.; Vostrikov, S.V. Hydrogen storage: Thermodynamic analysis of alkyl-quinolines and alkyl-pyridines as potential liquid organic hydrogen carriers (LOHC). Appl. Sci. 2021, 11, 11758. [Google Scholar] [CrossRef]
- Konnova, M.E.; Li, S.; Bösmann, A.; Müller, K.; Wasserscheid, P.; Andreeva, I.V.; Turovtzev, V.V.; Zaitsau, D.H.; Pimerzin, A.A.; Verevkin, S.P. Thermochemical Properties and Dehydrogenation Thermodynamics of Indole Derivates. Ind. Eng. Chem. Res. 2020, 59, 20539–20550. [Google Scholar] [CrossRef]
- Müller, K.; Skeledzic, T.; Wasserscheid, P. Strategies for Low-Temperature Liquid Organic Hydrogen Carrier Dehydrogenation. Energy Fuels 2021, 35, 10929–10936. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Samarov, A.A.; Vostrikov, S.V.; Wasserscheid, P.; Müller, K. Comprehensive thermodynamic study of alkyl-cyclohexanes as Liquid Organic Hydrogen Carriers motifs. Hydrogen 2022. submitted. [Google Scholar] [CrossRef]
- Luyben, W.L. Design and Control of the Cumene Process. Ind. Eng. Chem. Res. 2010, 49, 719–734. [Google Scholar] [CrossRef]
- Kostrab, G.; Mravec, D.; Bajus, M.; Janotka, I.; Sugi, Y.; Cho, S.J.; Kim, J.H. tert-Butylation of toluene over mordenite and cerium-modified mordenite catalysts. Appl. Catal. A Gen. 2006, 299, 122–130. [Google Scholar] [CrossRef]
- Verevkin, S.P. Thermochemical properties of iso-propylbenzenes. Thermochim. Acta 1998, 316, 131–136. [Google Scholar] [CrossRef]
- Verevkin, S.P. Thermochemical properties of branched alkylsubstituted benzenes. J. Chem. Thermodyn. 1998, 30, 1029–1040. [Google Scholar] [CrossRef]
- Verevkin, S.P. Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes. J. Chem. Thermodyn. 2006, 38, 1111–1123. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Kozlova, S.A.; Emel’yanenko, V.N.; Goodrich, P.; Hardacre, C. Thermochemistry of Ionic Liquid-Catalyzed Reactions. Experimental and Theoretical Study of Chemical Equilibria of Isomerization and Transalkylation of tert-Butylbenzenes. J. Phys. Chem. A 2008, 112, 11273–11282. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Zaitsau, D.H.; Schick, C.; Heym, F. Development of Direct and Indirect Methods for the Determination of Vaporization Enthalpies of Extremely Low-Volatile Compounds. In Handbook of Thermal Analysis and Calorimetry; Elsevier Science B.V: Amsterdam, The Netherlands, 2018; Volume 6, pp. 1–46. [Google Scholar]
- Verevkin, S.P. Gibbs Energy and Helmholtz Energy: Liquids, Solutions and Vapours; Wilhelm, E., Letcher, T.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2021; ISBN 978-1-83916-201-5. [Google Scholar]
- Kulikov, D.; Verevkin, S.P.; Heintz, A. Determination of Vapor Pressures and Vaporization Enthalpies of the Aliphatic Branched C 5 and C 6 Alcohols. J. Chem. Eng. Data 2001, 46, 1593–1600. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N. Transpiration method: Vapor pressures and enthalpies of vaporization of some low-boiling esters. Fluid Phase Equilib. 2008, 266, 64–75. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Rassolov, V.; Pople, J.A. Gaussian-3 theory using reduced Mo/ller-Plesset order. J. Chem. Phys. 1999, 110, 4703–4709. [Google Scholar] [CrossRef] [Green Version]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 084108. [Google Scholar] [CrossRef]
- Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- McDonald, R.A.; Shrader, S.A.; Stull, D.R. Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds. J. Chem. Eng. Data 1959, 4, 311–313. [Google Scholar] [CrossRef]
- Reid, R.C. Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds. AIChE J. 1972, 18, 1278. [Google Scholar] [CrossRef]
- Růẑička, V.; Zábranský, M.; Růẑička, K.; Majer, V. Vapor pressures for a group of high-boiling alkylbenzenes under environmental conditions. Thermochim. Acta 1994, 245, 121–144. [Google Scholar] [CrossRef]
- Hoskovec, M.; Grygarová, D.; Cvačka, J.; Streinz, L.; Zima, J.; Verevkin, S.P.; Koutek, B. Determining the vapour pressures of plant volatiles from gas chromatographic retention data. J. Chromatogr. A 2005, 1083, 161–172. [Google Scholar] [CrossRef]
- Melpolder, F.W.; Woodbridge, J.E.; Headington, C.E. The Isolation and Physical Properties of the Diisopropylbenzenes. J. Am. Chem. Soc. 1948, 70, 935–939. [Google Scholar] [CrossRef]
- Myers, H.S.; Fenske, M.R. Measurement and Correlation of Vapor Pressure Data for High Boiling Hydrocarbons. Ind. Eng. Chem. 1955, 47, 1652–1658. [Google Scholar] [CrossRef]
- Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A. Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for 1,4-Diisopropylbenzene, 1,2,4,5-Tetraisopropylbenzene, Cyclohexanone Oxime, Dimethyl Malonate, Glutaric Acid, and Pimelic Acid. J. Chem. Eng. Data 2002, 47, 725–739. [Google Scholar] [CrossRef]
- VonNiederhausern, D.M.; Wilson, G.M.; Giles, N.F. Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method. J. Chem. Eng. Data 2006, 51, 1990–1995. [Google Scholar] [CrossRef]
- Kasehgari, H.; Mokbel, I.; Viton, C.; Jose, J. Vapor pressure of 11 alkylbenzenes in the range 10-3—280 torr, correlation by equation of state. Fluid Phase Equilib. 1993, 87, 133–152. [Google Scholar] [CrossRef]
- SciFinder—Chemical Abstracts Service. Available online: http://scifinder.cas.org/ (accessed on 5 December 2022).
- Mokbel, I.; Rauzy, E.; Meille, J.P.; Jose, J. Low vapor pressures of 12 aromatic hydrocarbons. Experimental and calculated data using a group contribution method. Fluid Phase Equilib. 1998, 147, 271–284. [Google Scholar] [CrossRef]
- Stephenson, R.M.; Malanowski, S. Handbook of the Thermodynamics of Organic Compounds; Springer: Dordrecht, The Netherlands, 1987; ISBN 978-94-010-7923-5. [Google Scholar]
- Nazmutdinov, A.G.; Nesterov, I.A.; Nazmutdinov, T.A.; Nesterova, T.N. Investigation and prediction of vapor pressure of alkylbenzenes. Izv. Samar. Nauchnogo Tsentra RAN 2003, 8, 89–96. [Google Scholar]
- Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A. Vapor Pressure, Heat Capacity, and Density along the Saturation Line, Measurements for Cyclohexanol, 2-Cyclohexen-1-one, 1,2-Dichloropropane, 1,4-Di-tert-butylbenzene, (±)-2-Ethylhexanoic Acid, 2-(Methylamino)ethanol, Perfluoro-n-heptane, and Sulfolan. J. Chem. Eng. Data 1997, 42, 1021–1036. [Google Scholar] [CrossRef]
- Nesterov, I.A.; Nesterova, T.N.; Nazmutdinov, A.G.; Novozhenina, T.P. Study and prediction of alkylbenzenes’ vapour pressures. Fluid Phase Equilib. 2008, 269, 36–47. [Google Scholar] [CrossRef]
- Chirico, R.D.; Steele, W.V. Thermodynamic properties of tert-butylbenzene and 1,4-di-tert-butylbenzene. J. Chem. Thermodyn. 2009, 41, 392–401. [Google Scholar] [CrossRef]
- Hopke, E.R.; Sears, G.W. Vapor Pressures below 1 mm Hg of Several Aromatic Compounds. J. Chem. Phys. 1951, 19, 1345–1351. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Nagrimanov, R.N.; Varfolomeev, M.A.; Buzyurov, A.V.; Mukhametzyanov, T.A. Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15 K. Thermochim. Acta 2016, 627–629, 77–82. [Google Scholar] [CrossRef]
- Davies, M.; Kybett, B. Sublimation and vaporization heats of long-chain alcohols. Trans. Faraday Soc. 1965, 61, 1608. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G.; Liebman, J.F. Heat capacity corrections to a standard state: A comparison of new and some literature methods for organic liquids and solids. Struct. Chem. 1993, 4, 271–278. [Google Scholar] [CrossRef]
- Chickos, J.S.; Acree, W.E. Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001. J. Phys. Chem. Ref. Data 2002, 31, 537–698. [Google Scholar] [CrossRef]
- Gobble, C.; Chickos, J.; Verevkin, S.P. Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas Chromatography. J. Chem. Eng. Data 2014, 59, 1353–1365. [Google Scholar] [CrossRef]
- Walden, P. Über die Schmelzwärme, spezifische Kohäsion und Molekulargrösse bei der Schmelztemperatur. Z. Elektrotechnik Elektrochem. 1908, 14, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, A.; Zaitsau, D.H.; Kuratieva, N.V.; Verevkin, S.P.; Schick, C. Melting of nucleobases. Getting the cutting edge of “Walden’s Rule”. Phys. Chem. Chem. Phys. 2019, 21, 12787–12797. [Google Scholar] [CrossRef]
- Kováts, E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Gerasimenko, V.A.; Nabivach, V.M. Relationship between molecular structure and gas chromatographic retention of alkylbenzenes C8-C1 2 on polydimethylsiloxane. Zh. Anal. Khim. 1982, 37, 110–116. [Google Scholar]
- Engewald, W.; Wennrich, L. Molekülstruktur und Retentionsverhalten. VIII. Zum Retentionsverhalten höherer Alkylbenzole bei der Gas-Verteilungs-Chromatographie. Chromatographia 1976, 9, 540–547. [Google Scholar] [CrossRef]
- Poligné, I.; Collignan, A.; Trystram, G. Characterization of traditional processing of pork meat into boucané. Meat Sci. 2001, 59, 377–389. [Google Scholar] [CrossRef]
- Iraqi, R.; Vermeulen, C.; Benzekri, A.; Bouseta, A.; Collin, S. Screening for Key Odorants in Moroccan Green Olives by Gas Chromatography−Olfactometry/Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2005, 53, 1179–1184. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Heintz, A. Determination of Vaporization Enthalpies of the Branched Esters from Correlation Gas Chromatography and Transpiration Methods. J. Chem. Eng. Data 1999, 44, 1240–1244. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G. Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times. Thermochim. Acta 1995, 249, 41–62. [Google Scholar] [CrossRef]
- Nesterov, I.A.; Nesterova, T.N.; Pimerzin, A.A.; Tsvetkov, V.S. Thermodynamics of alkylbenzene sorption and evaporation. IV. Evaporation enthalpies and thermodynamic characteristics of sorption by stationary OV-101 and PEG-40M phases. Izv. Vyss. Uchebnykh Zaved. Khimiya i Khimicheskaya Tekhnologiya 2000, 43, 39–45. [Google Scholar]
- Connolly, M.L. Solvent-Accessible Surfaces of Proteins and Nucleic Acids. Science 1983, 221, 709–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakus, K.; Verevkin, S.P.; Schätzer, J.; Beckhaus, H.; Rüchardt, C. Thermolabile Hydrocarbons, 33. Thermochemistry and Thermal Decomposition of 9,9′-Bifluorenyl and 9,9′-Dimethyl-9,9′-bifluorenyl—The Stabilization Energy of 9-Fluorenyl Radicals. Chem. Ber. 1994, 127, 1095–1103. [Google Scholar] [CrossRef]
- Connolly, M.L. QCPE Program No. 429, Quantum Chemistry Program Exchange; University of Indiana: Bloomington, IN, USA, 2013. [Google Scholar]
- Pedley, J.B.; Naylor, R.D.; Kirby, S.P. Thermochemical Data of Organic Compounds; Chapman and Hall: New York, NY, USA, 1986; pp. 1–792. [Google Scholar]
- Arnett, E.M.; Sanda, J.C.; Bollinger, J.M.; Barber, M. Crowded benzenes. VI. Strain energy in o-di-tert-butylbenzenes. J. Am. Chem. Soc. 1967, 89, 5389–5400. [Google Scholar] [CrossRef]
- Olofsson, G. Assignment of Uncertainties; International Union of Pure and Applied Chemistry: Zürich, Switzerland, 1979; Volume 9. [Google Scholar]
- Popov, V.E.; Rozhnov, A.M.; Safronov, V.S.; Volkova, A.G. Disproportionation Equilibrium for Isopropylbenzene. Neftekhimiya 1974, 14, 364–367. [Google Scholar]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Wheeler, S.E.; Houk, K.N.; Schleyer, P.v.R.; Allen, W.D. A Hierarchy of Homodesmotic Reactions for Thermochemistry. J. Am. Chem. Soc. 2009, 131, 2547–2560. [Google Scholar] [CrossRef] [Green Version]
- Verevkin, S.P.; Emel’yanenko, V.N.; Notario, R.; Roux, M.V.; Chickos, J.S.; Liebman, J.F. Rediscovering the Wheel. Thermochemical Analysis of Energetics of the Aromatic Diazines. J. Phys. Chem. Lett. 2012, 3, 3454–3459. [Google Scholar] [CrossRef]
- Krüerke, U.; Hoogzand, C.; Hübel, W. Über Organometall-Komplexe, VI. 1.2.4-Tri-tert.-butyl-benzol. Chem. Ber. 1961, 94, 2817–2820. [Google Scholar] [CrossRef]
- Hoogzand, C.; Hűbel, W. On -tertiarybutylbenzenes 1,2,4,5-tetra-tertiarybutylbenzene. Tetrahedron Lett. 1961, 2, 637–643. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Sazonova, A.Y.; Emel’yanenko, V.N.; Zaitsau, D.H.; Varfolomeev, M.A.; Solomonov, B.N.; Zherikova, K.V. Thermochemistry of Halogen-Substituted Methylbenzenes. J. Chem. Eng. Data 2015, 60, 89–103. [Google Scholar] [CrossRef]
- Emel’yanenko, V.N.; Verevkin, S.P. Benchmark Thermodynamic Properties of 1,3-Propanediol: Comprehensive Experimental and Theoretical Study. J. Chem. Thermodyn. 2015, 85, 111–119. [Google Scholar] [CrossRef]
- Kurbatov, V.Y. Specific Heat of Liquids. I. Specific Heat of Benzenoid Hydrocarbons. Zhur. Obs. Khim. 1947, 17, 1999–2003. [Google Scholar]
- Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A. Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, Sec -Butylbenzene, Tert -Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-Ethyl-1,3-Propanediol, 2,2,4-Trimeth. J. Chem. Eng. Data 2002, 47, 648–666. [Google Scholar] [CrossRef]
- Acree, W.; Chickos, J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies from 1880 to 2015. Part 1. C 1−C 10. J. Phys. Chem. Ref. Data 2016, 45, 033101. [Google Scholar] [CrossRef]
- Clarke, E.C.W.; Glew, D.N. Evaluation of Thermodynamic Functions from Equilibrium Constants. Trans. Faraday Soc. 1966, 62, 539. [Google Scholar] [CrossRef]
- Olofsson, G.; Sunner, S. Combustion Calorimetry; Pergamon: New York, NY, USA, 1979. [Google Scholar]
- Hubbard, W.N.; Scott, D.W.; Waddington, G. Standard States and Corrections for Combustions in a Bomb at Constant Volume, Chap. 5. In Experimental Thermochemistry: Measurements of Heats of Reactions; Interscience; Rossini, F.D., Ed.; Interscience Publishers: New York, NY, USA, 1956; pp. 75–128. [Google Scholar]
- Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. Ref. Data 2008, 37, 1855–1996. [Google Scholar] [CrossRef] [Green Version]
- Chickos, J.S.; Hesse, D.G.; Liebman, J.F. Estimating Enthalpies of Sublimation of Hydrocarbons. In Energetics of Organometallic Species; Springer: Dordrecht, The Netherlands, 1992; pp. 159–169. [Google Scholar]
- Nagrimanov, R.N.; Ziganshin, M.A.; Solomonov, B.N.; Verevkin, S.P. Thermochemistry of Drugs: Experimental and Theoretical Study of Analgesics. Struct. Chem. 2019, 30, 247–261. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N.; Nagrimanov, R.N. Nearest-Neighbor and Non-Nearest-Neighbor Interactions between Substituents in the Benzene Ring. Experimental and Theoretical Study of Functionally Substituted Benzamides. J. Phys. Chem. A 2016, 120, 9867–9877. [Google Scholar] [CrossRef]
- Colomina, M.; Jiménez, P.; Roux, M.; Turrión, C. Thermochemical Properties of 1,2,4,5-Tetramethylbenzene, Pentamethylbenzene, and Hexamethylbenzene. J. Chem. Thermodyn. 1989, 21, 275–281. [Google Scholar] [CrossRef]
Compounds | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | 5 |
benzene (liq) | 49.0 ± 0.6 [56] | 33.9 ± 0.1 [56] | 82.9 ± 0.6 | |
iso-propyl-benzene (liq) | −41.1 ± 1.0 [56] | 45.2 ± 0.2 | 4.1 ± 1.0 | |
2-methyl-iso-propyl-benzene (liq) | −73.3 ± 0.9 [56] | 49.3 ± 0.6 | −24.0 ± 1.0 | −22.3 ± 1.0 |
3-methyl-iso-propyl-benzene (liq) | −78.6 ± 1.1 [56] | 49.4 ± 0.6 | −29.2 ± 1.3 | −27.2 ± 1.0 |
4-methyl-iso-propyl-benzene (liq) | −78.0 ± 1.1 [56] | 49.6 ± 0.5 | −28.4 ± 1.2 | −26.8 ± 1.0 |
1,2-di-iso-propyl-benzene (liq) | (−120.1 ± 1.2) d | 54.9 ± 0.7 | − | −65.2 ± 1.0 |
1,3-di-iso-propyl-benzene (liq) | −131.9 ± 2.7 [T S8] | 55.2 ± 0.6 | −76.7 ± 2.9 | −75.4 ± 1.0 |
1,4-di-iso-propyl-benzene (liq) | −130.2 ± 0.9 [T S10] | 56.2 ± 0.5 | −74.0 ± 1.0 | −74.5 ± 1.0 |
1,3,5-tri-iso-propyl-benzene (liq) | −219.5 ± 3.7 [T S8] | 65.6 ± 0.6 | −153.9 ± 3.8 | −154.9 ± 0.8 |
1,2,4,5-tetra-iso-propyl-benzene (cr) | −297.4 ± 2.0 [27] | 87.1 ± 1.7 e | −210.3 ± 2.6 | −216.7 ± 0.8 |
1-iso-propyl-2-tert-butyl-benzene (liq) | 57.4 ± 1.0 | − | −77.4 ± 0.9 | |
tert-butyl-benzene (liq) | −71.2 ± 0.5 [12] | 47.5 ± 0.4 | −23.7 ± 0.6 | |
2-methyl-tert-butyl-benzene (liq) | (−83.1 ± 1.2) d | 51.1 ± 0.7 | − | −32.0 ± 0.9 |
3-methyl-tert-butyl-benzene (liq) | −110.0 ± 2.3 [T S9] | 51.4 ± 0.4 | −58.6 ± 2.4 | −54.9 ± 0.9 |
4-methyl-tert-butyl-benzene (liq) | −110.0 ± 2.3 [T S8] | 52.3 ± 0.3 | −57.7 ± 2.4 | −54.7 ± 0.9 |
3,5-di-methyl-tert-butyl-benzene (liq) | −146.8 ± 2.2 [T S8] | 56.6 ± 0.3 | −90.2 ± 2.2 | −90.1 ± 0.8 |
1,2-di-tert-butyl-benzene (liq) | −97.8 ± 2.6 f | 56.6 ± 1.5 | −41.2 ± 3.0 | −37.5 ± 0.8 |
1,3-di-tert-butyl-benzene (liq) | −188.6 ± 1.1 [T S9] | 59.8 ± 0.5 | −128.8 ± 1.2 | −131.0 ± 0.8 |
1,4-di-tert-butyl-benzene (cr) | −212.3 ± 2.4 [T S8] | 82.1 ± 0.4 | −130.2 ± 2.4 | −130.7 ± 0.8 |
1-methyl-3,5-di-tert-butyl-benzene (cr) | −246.1 ± 2.7 [T S8] | 81.0 ± 0.5 | −165.1 ± 2.7 | −160.9 ± 0.9 |
1,3,5-tri-tert-butyl-benzene (cr) | −321.2 ± 1.9 [T S10] | 80.4 ± 0.4 | −240.8 ± 1.9 | −239.9 ± 0.8 |
1,2,4-tri-tert-butyl-benzene (liq) | −216.2 ± 3.0 g | 67.7 ± 1.5 | −148.5 ± 3.4 | −147.5 ± 1.2 |
1,2,4,5-tetra-tert-butyl-benzene (liq) | (−252.6 ± 12.1) d | 73.6 ± 1.5 | − | −179.0 ± 1.4 |
Reactions | ||
---|---|---|
2×iso-propyl-benzene → benzene + 1,4-di-iso-propyl-benzene | R1 | 1.5 ± 0.6 [59] |
4-Me-tert-butyl-benzene → 3-Me-tert-butyl-benzene | R2 | 0.02 ± 0.13 [10] |
1,4-di-tert-butyl-benzene → 1,3-di-tert-butyl-benzene | R3 | 1.5 ± 0.3 [10] |
1,3-di-tert-butyl-benzene + benzene → 2×tert-butyl-benzene | R4 | −3.0 ± 0.7 [10] |
1,3,5-tri-tert-butyl-benzene +tert-butyl-benzene → 1,4-di-tert-butyl-benzene | ||
+1,3-di-tert-butyl-benzene | R5 | 1.0 ± 0.8 [10] |
Compounds | G3MP2 | G4 | |||
---|---|---|---|---|---|
2-methyl-iso-propyl-benzene | −23.7 | −21.0 ± 1.6 | −24.0 | −23.1 ± 1.6 | −22.3 ± 1.0 |
3-methyl-iso-propyl-benzene | −28.3 | −25.7 ± 1.6 | −29.0 | −28.3 ± 1.6 | −27.2 ± 1.0 |
4-methyl-iso-propyl-benzene | −27.9 | −25.3 ± 1.6 | −28.5 | −27.8 ± 1.6 | −26.8 ± 1.0 |
1,2-di-iso-propyl-benzene | −68.0 | −65.7 ± 1.6 | −66.9 | −64.0 ± 1.6 | −65.2 ± 1.0 |
1,3-di-iso-propyl-benzene | −76.9 | −74.9 ± 1.6 | −77.6 | −75.1 ± 1.6 | −75.4 ± 1.0 |
1,4-di-iso-propyl-benzene | −76.1 | −74.0 ± 1.6 | −76.8 | −74.3 ± 1.6 | −74.5 ± 1.0 |
1,2,4-tri-iso-propyl-benzene | −148.3 | −145.2 ± 1.2 | −148.1 | −144.2 ± 1.2 | −145.0 ± 0.8 |
1,2,3-tri-iso-propyl-benzene | −125.2 | −121.5 ± 1.2 | −124.9 | −120.1 ± 1.2 | −121.8 ± 0.8 |
1,3,5-tri-iso-propyl-benzene | −157.6 | −154.7 ± 1.2 | −158.0 | −154.5 ± 1.2 | −154.9 ± 0.8 |
1,2,4,5-tetra-iso-propyl-benzene | −221.3 | −217.3 ± 1.2 | −220.3 | −215.1 ± 1.2 | −216.7 ± 0.8 |
1-iso-propyl-2-tert-butyl-benzene | −79.7 | −77.5 ± 1.4 | −79.2 | −76.8 ± 1.4 | −77.4 ± 0.9 |
2-methyl-tert-butyl-benzene | −33.6 | −31.0 ± 1.4 | −33.3 | −32.7 ± 1.4 | −32.0 ± 0.9 |
3-methyl-tert-butyl-benzene | −55.6 | −53.5 ± 1.4 | −55.8 | −56.1 ± 1.4 | −54.9 ± 0.9 |
4-methyl-tert-butyl-benzene | −55.4 | −53.3 ± 1.4 | −55.6 | −55.9 ± 1.4 | −54.7 ± 0.9 |
3,5-di-methyl-tert-butyl-benzene | −87.6 | −91.5 ± 1.1 | −88.0 | −89.1 ± 1.1 | −90.1 ± 0.8 |
1,2-di-tert-butyl-benzene | −40.8 | −37.4 ± 1.1 | −41.0 | −37.1 ± 1.1 | −37.5 ± 0.8 |
1,3-di-tert-butyl-benzene | −131.9 | −130.9 ± 1.1 | −131.4 | −131.1 ± 1.1 | −131.0 ± 0.8 |
1,4-di-tert-butyl-benzene | −131.4 | −130.9 ± 1.1 | −130.7 | −130.4 ± 1.1 | −130.7 ± 0.8 |
1-methyl-3,5-di-tert-butyl-benzene | −163.4 | −160.5 ± 1.4 | −163.6 | −160.5 ± 1.4 | −160.9 ± 0.9 |
1,3,5-tri-tert-butyl-benzene | −241.2 | −239.4 ± 1.2 | −240.6 | −240.2 ± 1.2 | −239.9 ± 0.8 |
1,2,3-tri-tert-butyl-benzene | −58.8 | −52.3 ± 1.2 | −59.9 | −52.1 ± 1.2 | −52.9 ± 0.8 |
1,2,4-tri-tert-butyl-benzene | −151.3 | −147.2 ± 1.2 | −147.5 ± 1.2 | ||
1,2,4,5-tetra-tert-butyl-benzene | −185.1 | −178.2 ± 1.5 | −179.0 ± 1.4 |
Compound | kJ·mol−1 | kJ·mol−1 | kJ·mol−1 | kJ·mol−1 |
---|---|---|---|---|
1,2-di-tert-butylbenzene | −37.5 ± 0.8 | 72.1 ± 2.6 | −109.6 ± 2.7 | −113.3 ± 3.3 e |
1,2,4-tri-tert-butylbenzene | −147.5 ± 1.2 | 84.0 ± 2.5 | −231.5 ± 2.8 | −252 ± 16 f [64] |
1,2,4,5-tetra-tert-butylbenzene | −179.0 ± 1.4 | 94.0 ± 2.6 | −273.5 ± 3.0 | −279.9 ± 9.0 [65] |
Compound | ||||
---|---|---|---|---|
hexa-methyl-benzene | −144.3 ± 2.8 | −310.1 ± 2.5 | −165.6 | −55.2 |
1,3,5-trimethyl-benzene | −63.4 ± 1.3 | −258.9 ± 2.5 | −195.5 | −65.2 |
iso-propyl-benzene (liq) | −41.1 ± 1.0 | −194.9 ± 2.5 | −197.8 | −65.9 |
2-methyl-iso-propyl-benzene | −71.6 ± 1.2 | −222.1 ± 2.5 | −198.5 | −66.2 |
3-methyl-iso-propyl-benzene | −76.6 ± 1.2 | −226.2 ± 2.5 | −197.3 | −65.8 |
4-methyl-iso-propyl-benzene | −76.4 ± 1.1 | −226.0 ± 2.5 | −196.4 | −65.5 |
1,2-di-iso-propyl-benzene | −120.1 ± 1.2 | −264.3 ± 2.5 | −199.1 | −66.4 |
1,3-di-iso-propyl-benzene | −130.6 ± 1.2 | −268.8 ± 2.5 | −193.1 | −64.4 |
1,4-di-iso-propyl-benzene | −130.7 ± 1.1 | −267.8 ± 2.5 | −192.0 | −64.0 |
1,2,4-tri-iso-propyl-benzene | −209.7 ± 1.7 | −338.5 ± 2.5 | −193.1 | −64.4 |
1,2,3-tri-iso-propyl-benzene | −185.2 ± 1.7 | −376.4 ± 2.5 | −191.2 | −63.7 |
1,3,5-tri-iso-propyl-benzene | −220.5 ± 1.0 | −335.8 ± 2.5 | −179.6 | −59.9 |
1,2,4,5-tetra-iso-propyl-benzene | −285.0 ± 1.8 | −410.2 ± 2.8 | −198.0 | −66.0 |
1-iso-propyl-2-tert-butyl-benzene | −134.8 ± 1.3 | −319.0 ± 2.8 | −184.2 | −61.4 |
tert-butyl-benzene (liq) | −71.2 ± 0.7 | −222.6 ± 2.5 | −198.4 | −66.1 |
2-methyl-tert-butyl-benzene | −83.1 ± 1.1 | −233.8 ± 2.5 | −201.2 | −67.1 |
3-methyl-tert-butyl-benzene | −106.3 ± 1.0 | −246.7 ± 2.5 | −190.9 | −63.6 |
4-methyl-tert-butyl-benzene | −107.0 ± 0.9 | −253.9 ± 2.5 | −198.2 | −66.1 |
3,5-di-methyl-tert-butyl-benzene | −146.7 ± 0.9 | −329.9 ± 2.5 | −183.2 | −61.1 |
1,2-di-tert-butyl-benzene | −94.1 ± 1.7 | −287.3 ± 2.5 | −253.6 | −84.5 |
1,3-di-tert-butyl-benzene | −190.8 ± 0.9 | −324.4 ± 2.5 | −196.9 | −65.6 |
1,4-di-tert-butyl-benzene | −191.2 ± 0.9 | −323.8 ± 2.5 | −193.9 | −64.6 |
1-methyl-3,5-di-tert-butyl-benzene | −223.4 ± 1.0 | −420.1 ± 2.5 | −196.7 | −65.6 |
1,3,5-tri-tert-butyl-benzene | −308.9 ± 1.1 | −414.4 ± 2.5 | −177.4 | −59.1 |
1,2,4-tri-tert-butyl-benzene | −215.2 ± 1.9 | −391.5 ± 2.8 | −246.8 | −82.3 |
1,2,3-tri-tert-butyl-benzene | −117.7 ± 1.7 | −354.5 ± 2.8 | −236.8 | −78.9 |
1,2,4,5-tetra-tert-butyl-benzene | −252.6 ± 2.1 | −410.9 ± 2.8 | −241.7 | −80.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verevkin, S.P.; Samarov, A.A.; Turovtsev, V.V.; Vostrikov, S.V.; Wasserscheid, P.; Müller, K. Thermodynamics of Chemical Hydrogen Storage: Are Sterically Hindered and Overcrowded Molecules More Effective? Appl. Sci. 2023, 13, 953. https://doi.org/10.3390/app13020953
Verevkin SP, Samarov AA, Turovtsev VV, Vostrikov SV, Wasserscheid P, Müller K. Thermodynamics of Chemical Hydrogen Storage: Are Sterically Hindered and Overcrowded Molecules More Effective? Applied Sciences. 2023; 13(2):953. https://doi.org/10.3390/app13020953
Chicago/Turabian StyleVerevkin, Sergey P., Artemiy A. Samarov, Vladimir V. Turovtsev, Sergey V. Vostrikov, Peter Wasserscheid, and Karsten Müller. 2023. "Thermodynamics of Chemical Hydrogen Storage: Are Sterically Hindered and Overcrowded Molecules More Effective?" Applied Sciences 13, no. 2: 953. https://doi.org/10.3390/app13020953
APA StyleVerevkin, S. P., Samarov, A. A., Turovtsev, V. V., Vostrikov, S. V., Wasserscheid, P., & Müller, K. (2023). Thermodynamics of Chemical Hydrogen Storage: Are Sterically Hindered and Overcrowded Molecules More Effective? Applied Sciences, 13(2), 953. https://doi.org/10.3390/app13020953