Impact of Construction and Functioning of a Newly Built Ski Slope on the Quality of Nearby Stream Water
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Strategy
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Precipitation Water
3.2. Quality of Water Used for the Production of Artificial Snow
3.3. Chemical Composition and Microbiological Quality of Water in the Remiaszów Stream
3.4. The Impact of the Construction and Operation of a Ski Run on the Quality of Water in the Remiaszów Stream
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudek, C.; Barni, E.; Stanchi, S.; D’Amico, M.; Pintaldi, E.; Freppaz, M. Mid and long-term ecological impacts of ski run construction on alpine ecosystems. Sci. Rep. 2020, 10, 11654. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.M.; Harrington, J.; Worboys, G. Environmental impacts of tourism on the Australian Alps protected areas. Mt. Res. Dev. 2003, 23, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Milne, J.E.; Lemense, J.; Virginia, R.A. Mountain Resort: Ecology and the Law; Routlege Taylor & Francis Group: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Molles, M.C.; Gosz, J.R. Effects of a ski area on the water quality and invertebrates of a mountain stream. Water Air Soil Pollut. 1980, 14, 187–205. [Google Scholar] [CrossRef]
- Kammer, P.M. Floristic changes in subalpine grasslands after 22 years of artificial snowing. J. Nat. Conserv. 2002, 10, 109–123. [Google Scholar] [CrossRef]
- Dahl, T.; Selegean, J.P. Impacts of artificial snowmaking on the hydrology of a small stream. In Proceedings of the 10th Joint Federal Interagency Conference on Sedimentation Conference and Hydrologic Modeling, Reno, NV, USA, 19–23 April 2015; pp. 525–536. [Google Scholar]
- Jones, H.G.; Devarennes, G. The chemistry of artificial snow and its influence on the germination of mountain flora. In IAHS Publications-Series of Proceedings and Reports; International Association of Hydrological Sciences: Wallingford, UK, 1995; Volume 228, pp. 355–360. [Google Scholar]
- Rixen, C.; Stoeckli, V.; Ammann, W. Does artificial snow production affect soil and vegetation of ski pistes? A review. Persp. Plant Ecol. 2003, 5, 219–230. [Google Scholar] [CrossRef]
- Lagriffoul, A.; Boudenne, J.L.; Absi, R.; Ballet, J.J.; Berjeaud, J.M.; Chevalier, S.; Creppy, E.E.; Gilli, E.; Gadonna, J.P.; Gadonna-Widehem, P.; et al. Bacterial-based additives for the production of artificial snow: What are the risks to human health? Sci. Total Environ. 2010, 408, 1659–1666. [Google Scholar] [CrossRef] [Green Version]
- Dorocki, S.; Raźniak, P.; Obirek, D. Development of ski infrastructure in Poland and the Podhale region on the basis of surveys. Stud. Ind. Geogr. Comm. Pol. Geogr. Soc. 2014, 28, 59–77. [Google Scholar]
- Available online: www.skiinfo.pl (accessed on 27 February 2018).
- Krzesiwo, K. Evaluation of the size of tourist traffic in the Kotelnica Białczańska Ski Resort in the winter season 2014/2015. Geogr. Stud. 2016, 145, 47–70. [Google Scholar] [CrossRef]
- Fidelus-Orzechowska, J.; Wrońska-Wałach, D.; Cebulski, J.; Żelazny, M. Effect of the construction of ski runs on changes in relief in a mountain catchment (Inner Carpathians, Southern Poland). Sci. Total Environ. 2018, 630, 1298–1308. [Google Scholar] [CrossRef]
- Fidelus-Orzechowska, J.; Gorczyca, E.; Bukowski, M.; Krzemień, K. Degradation of a protected mountain area by tourist traffic: Case study of the Tatra National Park, Poland. J. Mt. Sci. 2021, 18, 10. [Google Scholar] [CrossRef]
- Krzesiwo, K. Social and economic aspects of development of ski tourism. Entrep.-Educ. 2016, 12, 233–244. [Google Scholar]
- de Jong, C. Challenges for mountain hydrology in the third millennium. Front. Environ. Sci. 2015, 3, 38. [Google Scholar] [CrossRef]
- Eiriksdottir, E.S.; Sigurdsson, Á.; Gislason, S.R.; Torssander, P. Chemical composition of precipitation and river water in southern Iceland: Effects of Eyjafjallajökull volcanic eruptions and geothermal power plants. Procedia Earth Planet. Sci. 2014, 10, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Sapek, B. Calcium and magnesium in atmospheric precipitation, groundwater and the soil solution in long-term meadow experiments. J. Elem. 2014, 19, 191–208. [Google Scholar] [CrossRef]
- Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160 EEC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:064:0037:0051:EN:PDF (accessed on 10 January 2018).
- Lenart-Boroń, A.; Wolanin, A.; Jelonkiewicz, Ł.; Chmielewska-Błotnicka, D.; Żelazny, M. Spatiotemporal variability in microbiological water quality of the Białka river and its relation of the selected physicochemical parameters of water. Water Air Soil Pollut. 2016, 227, 22. [Google Scholar] [CrossRef]
- Lenart-Boroń, A.; Prajsnar, J.; Krzesiwo, K.; Wolanin, A.; Jelonkiewicz, Ł.; Jelonkiewicz, E.; Żelazny, M. Diurnal variation in the selected indicators of water contamination in the Białka river affected by a sewage treatment plant discharge. Fresenius Environ. Bull. 2016, 25, 5271–5279. [Google Scholar]
- Rutkowska, A.; Żelazny, M.; Kohnova, S.; Łyp, M.; Banasik, K. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland. Pure Appl. Geophys. 2017, 174, 701–721. [Google Scholar] [CrossRef]
- Żelazny, M.; Rajwa-Kuligiewicz, A.; Bojarczuk, A.; Pęksa, Ł. Water temperature fluctuation patterns in surface waters of the Tatra Mts., Poland. J. Hydrol. 2018, 564, 824–835. [Google Scholar] [CrossRef]
- Sha’arani, S.; Azizan, S.N.F.; Md Akhir, F.N.; Muhammad Yuzir, M.A.; Othman, N.; Zakaria, Z.; Mohd Noor, M.J.M.; Hara, H. Removal efficiency of Gram-positive and Gram-negative bacteria using a natural coagulant during coagulation, flocculation, and sedimentation processes. Water Sci. Technol. 2019, 80, 1787–1795. [Google Scholar] [CrossRef]
- Likens, G.E.; Borman, F.H.; Johnson, N.M.; Fisher, D.W.; Pierce, R.S. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr. 1970, 40, 23–47. [Google Scholar] [CrossRef]
- Żelazny, M.; Pufelska, M.; Sajdak, M.; Jelonkiewicz, Ł.; Bukowski, M. Effect of deforestation of different genesis on spatial variability of nitrate concentration in stream water in the tatra national park. Acta Sci. Pol. Form. Circumiectus 2019, 18, 149–161. [Google Scholar] [CrossRef]
- Wang, X.; Burns, D.A.; Yanai, R.D.; Briggs, R.D.; Germain, R.H. Changes in stream chemistry and nutrient export following a partial harvest in the Catskill Mountains, New York, USA. For. Ecol. Manag. 2006, 223, 103–112. [Google Scholar] [CrossRef]
- Kosmowska, A.; Żelazny, M.; Małek, S.; Siwek, J.P. Influence of deforestation on short-term changes in the chemical composition of water in the Malinowski Stream catchment (southern Poland). Sylwan 2015, 159, 778–790. [Google Scholar]
- Sajdak, M.; Siwek, J.P.; Wasak-Sęk, K.; Kosmowska, A.; Stańczyk, T.; Małek, S.; Żelazny, M.; Woźniak, G.; Jelonkiewicz, Ł.; Żelazny, M. Stream water chemistry changes in response to deforestation of variable origin (case study from the Carpathians, southern Poland). Catena 2021, 202, 105237. [Google Scholar] [CrossRef]
- Likens, G.E.; Driscoll, C.T.; Buso, D.C.; Siccama, T.G.; Johnson, C.E.; Lovett, G.M.; Ryan, D.F.; Fahey, T.; Reiners, W.A. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 1994, 25, 61–125. [Google Scholar] [CrossRef]
- Lovett, G.M.; Likens, G.E.; Buso, D.C.; Driscoll, C.T.; Bailey, S.W. The biogeochemistry of chlorine Hubbard Brook New Hampshire, USA. Biogechemistry 2005, 72, 191–232. [Google Scholar] [CrossRef]
- Płaczkowska, E.; Mostowik, K.; Bogena, H.R.; Leuchner, M. The Impact of Partial Deforestation on Solute Fluxes and Stream Water Ionic Composition in a Headwater Catchment. Water 2023, 15, 107. [Google Scholar] [CrossRef]
- Nodvin, S.C.; Driscoll, C.T.; Likens, G.E. Soil processes and sulfate loss at the Hubbard Brook Experimental Forest. Biogeochemistry 1988, 5, 185–199. [Google Scholar] [CrossRef]
- McHale, M.R.; Murdoh, P.S.; Burns, D.; Baldigo, B.P. Effects of Forest Harvesting on Ecosystem Health in the Headwaters of the New York City Water Supply, Catskill Mountains, New York (Scientific Investigations Report 2008-5057). 2008 Reston, Virginia: US Geological Survey. Available online: https://pubs.usgs.gov/sir/2008/5057/SIR2008-5057.pdf (accessed on 20 January 2018).
- Jung, A.V.; Le Cann, P.; Roig, B.; Thomas, O.; Baurès, E.; Thomas, M.F. Microbial contamination detection in water resources: Interest of current optical methods, trends and needs in the context of climate change. Int. J. Environ. Res. Public Health 2014, 11, 4292–4310. [Google Scholar] [CrossRef] [Green Version]
- Crim, J.F.; Schoonover, J.E.; Graeme Lockaby, B. Assessment of Faecal Coliform and Escherichia Coli across a land cover gradient in West Georgia streams. Water Qual. Expo. Health 2012, 4, 143–158. [Google Scholar] [CrossRef]
- Martinsen, V.; Grund, F.; Kjeve, M.N.; de Wit, H.A.; Austrheim, G.; Mysterud, A.; Mulder, J. Differences in the quality of seepage water and runoff caused by plant community and grazing at an alpine site in Hol, Southern Norway. Water Air Soil Pollut. 2013, 224, 1649. [Google Scholar] [CrossRef]
- Wagner, K.L.; Gentry, T.J.; Harmel, R.D.; Pope, E.C.; Redmon, L.A. Grazing Effects on Bovine-Associated and Background Fecal Indicator Bacteria Levels in Edge-of-Field Runoff. Water 2021, 13, 928. [Google Scholar] [CrossRef]
- Moriarty, E.M.; Mackenzie, M.L.; Karki, N.; Sinton, L.W. Survival of Escherichia coli, enterococci and Campylobacter spp. in sheep feces on pastures. Appl. Environ. Microbiol. 2011, 77, 1797–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaroszewicz, A. Self-purification process in river ecosystems. Słupsk Biol. Pap. 2007, 4, 27–41. (In Polish) [Google Scholar]
- Tian, S.; Wang, Z.; Shang, H. Study on the self-purification of Juma river. Procedia Environ. Sci. 2011, 11, 1328–1333. [Google Scholar] [CrossRef]
- Zeng, L.; Li, R.Y.M.; Nuttapong, J.; Sun, J.; Mao, Y. Economic Development and Mountain Tourism Research from 2010 to 2020: Bibliometric Analysis and Science Mapping Approach. Sustainability 2022, 14, 562. [Google Scholar] [CrossRef]
Feature | Unit | Mean | Median | Min | Max | Q25 * | Q75 * | CV * [%] |
---|---|---|---|---|---|---|---|---|
pH | – | 6.34 | 6.42 | 5.56 | 6.85 | 6.09 | 6.67 | 7.3 |
EC | µS/cm | 31.27 | 32.35 | 17.90 | 46.90 | 20.60 | 37.50 | 34.9 |
TDS | mg/L | 21.37 | 23.20 | 12.01 | 31.63 | 12.61 | 25.56 | 36.1 |
Ca2+ | 3.478 | 4.052 | 1.028 | 5.475 | 1.560 | 4.703 | 51.4 | |
Mg2+ | 0.463 | 0.490 | 0.116 | 0.648 | 0.418 | 0.618 | 42.0 | |
Na+ | 0.435 | 0.429 | 0.249 | 0.572 | 0.405 | 0.525 | 25.7 | |
K+ | 0.689 | 0.466 | 0.233 | 1.724 | 0.369 | 0.879 | 80.1 | |
NH4+ | 0.634 | 0.442 | 0.266 | 1.756 | 0.385 | 0.514 | 87.6 | |
HCO3− | 8.431 | 8.125 | 2.438 | 12.780 | 7.038 | 12.082 | 44.7 | |
SO42− | 3.848 | 4.107 | 1.947 | 5.636 | 2.413 | 4.879 | 36.9 | |
Cl− | 1.000 | 0.969 | 0.323 | 1.704 | 0.876 | 1.156 | 44.9 | |
NO3− | 2.306 | 1.992 | 1.189 | 4.288 | 1.576 | 2.802 | 48.2 | |
NO2− | 0.078 | 0.085 | 0.033 | 0.127 | 0.034 | 0.104 | 49.4 |
Feature | Unit | Mean | Median | Min | Max | Q25 * | Q75 * | CV * [%] |
---|---|---|---|---|---|---|---|---|
pH | – | 7.66 | 7.74 | 7.03 | 8.15 | 7.42 | 7.94 | 4.6 |
EC | µS/cm | 250.4 | 256.5 | 133.7 | 299.6 | 251.3 | 269.6 | 16.2 |
TDS | mg/L | 197.2 | 202.4 | 100.9 | 230.1 | 197.1 | 208.6 | 16.6 |
Ca2+ | 36.1 | 36.8 | 19.5 | 42.8 | 35.6 | 38.7 | 16.1 | |
Mg2+ | 7.5 | 7.7 | 4.0 | 8.9 | 7.4 | 8.1 | 16.4 | |
Na+ | 3.87 | 3.85 | 1.39 | 5.27 | 3.45 | 4.63 | 28.0 | |
K+ | 0.832 | 0.835 | 0.629 | 1.057 | 0.761 | 0.909 | 13.9 | |
HCO3− | 117.5 | 122.6 | 59.9 | 141.3 | 115.0 | 124.8 | 16.9 | |
SO42− | 22.4 | 23.4 | 10.4 | 26.8 | 21.4 | 25.1 | 19.6 | |
Cl− | 5.2 | 5.3 | 1.7 | 7.7 | 4.3 | 6.6 | 33.7 | |
NO3− | 3.5 | 3.5 | 2.7 | 4.8 | 3.1 | 3.7 | 16.8 | |
Total coliforms | CFU/100 mL | 14,980 | 4390 | 49 | 112,000 | 106 | 13,000 | 209.6 |
Total E. coli | 6570 | 925 | 5 | 44,600 | 80 | 5100 | 202.6 | |
Fecal coliforms | 3350 | 220 | 30 | 21,000 | 105 | 2195 | 201.7 | |
Fecal E. coli | 2600 | 130 | 21 | 19,500 | 51 | 1770 | 221.0 | |
Mesophilic bacteria. | CFU/mL | 3270 | 720 | 12 | 14,510 | 263 | 4198 | 153.4 |
Psychrophilic bacteria. | 3450 | 1950 | 30 | 9000 | 740 | 6050 | 93.1 |
Feature | Unit | Mean | Median | Min | Max | Q25 * | Q75 * | CV * [%] |
---|---|---|---|---|---|---|---|---|
pH | – | 7.8 | 7.9 | 7.1 | 8.2 | 7.5 | 8.1 | 4.2 |
EC | µS/cm | 328.8 | 338.1 | 201.5 | 387.1 | 297.9 | 365.9 | 14.4 |
TDS | mg/L | 280.9 | 282.7 | 157.7 | 335.2 | 254.1 | 323.4 | 16.3 |
Ca2+ | 54.2 | 54.6 | 33.2 | 62.9 | 49.5 | 59.9 | 13.7 | |
Mg2+ | 8.53 | 8.69 | 4.49 | 12.06 | 7.03 | 10.08 | 21.5 | |
Na+ | 3.27 | 2.72 | 1.64 | 10.17 | 2.43 | 3.08 | 54.1 | |
K+ | 1.02 | 0.98 | 0.73 | 1.55 | 0.92 | 1.06 | 20.0 | |
HCO3− | 186.8 | 187.0 | 101.0 | 237.6 | 161.9 | 214.9 | 18.7 | |
SO42− | 21.4 | 21.4 | 11.4 | 35.3 | 19.1 | 24.4 | 24.1 | |
Cl− | 3.08 | 2.09 | 1.13 | 16.20 | 1.43 | 2.73 | 105.4 | |
NO3− | 2.46 | 1.85 | 0.81 | 6.02 | 1.38 | 3.51 | 58.5 | |
Total coliforms | CFU/100 mL | 838 | 80 | 0 | 7700 | 1 | 1000 | 209.8 |
Total E. coli | 572 | 20 | 0 | 7200 | 0 | 400 | 270.0 | |
Fecal coliforms | 473 | 8 | 0 | 6900 | 0 | 170 | 305.4 | |
Fecal E. coli | 508 | 6 | 0 | 5620 | 0 | 550 | 253.3 | |
Mesophilic bacteria. | CFU/mL | 737 | 310 | 15 | 4015 | 60 | 780 | 150.8 |
Psychrophilic bacteria. | 10,404 | 3260 | 40 | 88,000 | 420 | 8600 | 211.6 |
Feature | F * | p ** |
---|---|---|
pH | 16.645 | 0.000 |
EC | 0.793 | 0.466 |
TDS | 0.460 | 0.638 |
Ca2+ | 0.475 | 0.628 |
Mg2+ | 0.301 | 0.743 |
Na+ | 0.493 | 0.618 |
K+ | 8.740 | 0.002 |
HCO3− | 0.718 | 0.500 |
SO42− | 0.376 | 0.691 |
Cl− | 0.960 | 0.400 |
NO3− | 3.627 | 0.045 |
Total coliforms | 1.191 | 0.325 |
Total E. coli | 4.927 | 0.018 |
Fecal coliforms | 11.008 | 0.001 |
Fecal E. coli | 8.402 | 0.002 |
Mesophilic bacteria | 2.614 | 0.098 |
Psychrophilic bacteria | 0.466 | 0.634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenart-Boroń, A.; Bojarczuk, A.; Żelazny, M. Impact of Construction and Functioning of a Newly Built Ski Slope on the Quality of Nearby Stream Water. Appl. Sci. 2023, 13, 763. https://doi.org/10.3390/app13020763
Lenart-Boroń A, Bojarczuk A, Żelazny M. Impact of Construction and Functioning of a Newly Built Ski Slope on the Quality of Nearby Stream Water. Applied Sciences. 2023; 13(2):763. https://doi.org/10.3390/app13020763
Chicago/Turabian StyleLenart-Boroń, Anna, Anna Bojarczuk, and Mirosław Żelazny. 2023. "Impact of Construction and Functioning of a Newly Built Ski Slope on the Quality of Nearby Stream Water" Applied Sciences 13, no. 2: 763. https://doi.org/10.3390/app13020763
APA StyleLenart-Boroń, A., Bojarczuk, A., & Żelazny, M. (2023). Impact of Construction and Functioning of a Newly Built Ski Slope on the Quality of Nearby Stream Water. Applied Sciences, 13(2), 763. https://doi.org/10.3390/app13020763