De Meulenaere, R.; Coppitters, D.; Sikkema, A.; Maertens, T.; Blondeau, J.
Uncertainty Quantification for Thermodynamic Simulations with High-Dimensional Input Spaces Using Sparse Polynomial Chaos Expansion: Retrofit of a Large Thermal Power Plant. Appl. Sci. 2023, 13, 10751.
https://doi.org/10.3390/app131910751
AMA Style
De Meulenaere R, Coppitters D, Sikkema A, Maertens T, Blondeau J.
Uncertainty Quantification for Thermodynamic Simulations with High-Dimensional Input Spaces Using Sparse Polynomial Chaos Expansion: Retrofit of a Large Thermal Power Plant. Applied Sciences. 2023; 13(19):10751.
https://doi.org/10.3390/app131910751
Chicago/Turabian Style
De Meulenaere, Roeland, Diederik Coppitters, Ale Sikkema, Tim Maertens, and Julien Blondeau.
2023. "Uncertainty Quantification for Thermodynamic Simulations with High-Dimensional Input Spaces Using Sparse Polynomial Chaos Expansion: Retrofit of a Large Thermal Power Plant" Applied Sciences 13, no. 19: 10751.
https://doi.org/10.3390/app131910751
APA Style
De Meulenaere, R., Coppitters, D., Sikkema, A., Maertens, T., & Blondeau, J.
(2023). Uncertainty Quantification for Thermodynamic Simulations with High-Dimensional Input Spaces Using Sparse Polynomial Chaos Expansion: Retrofit of a Large Thermal Power Plant. Applied Sciences, 13(19), 10751.
https://doi.org/10.3390/app131910751