Adaptive Age Estimation towards Imbalanced Datasets
Abstract
:1. Introduction
- The adaptive soft label (ASL) module makes use of soft labels in the age regression, reducing the imbalance of the data.
- The Data Density Smoothing (DDS) module smooths the distribution of data before reweighting the loss function.
2. Related Work
3. Method
3.1. Adaptive Soft Label Module
3.2. Data Density Smoothing Module
3.3. Training Objective
4. Experiments
4.1. Datasets and Setting
4.1.1. Datasets
4.1.2. Evaluation Process and Evaluation Metrics
4.1.3. Implementation Details
4.1.4. Training Details
4.2. Comparison Experiments
4.2.1. Comparison on IMDB-WIKI-DIR
4.2.2. Comparision on Morph II-DIR
4.3. Ablation Experiments
4.4. Loss Function Reweighting Strategies
4.5. Hyper-Parameter Setting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Z.; Ni, B.; Guo, D.; Sim, T.; Yan, S. Learning universal multi-view age estimator using video context. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 241–248. [Google Scholar] [CrossRef]
- Geng, X.; Zhou, Z.-H.; Zhang, Y.; Li, G.; Dai, H. Learning from facial aging patterns for automatic age estimation. In Proceedings of the 14th ACM international Conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 307–316. [Google Scholar] [CrossRef]
- Rothe, R.; Timofte, R.; Van Gool, L. Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 2018, 126, 144–157. [Google Scholar] [CrossRef]
- Lanitis, A.; Draganova, C.; Christodoulou, C. Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2017, 106, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Zeng, W.; Yang, B.; Urtasun, R. Learning to reweight examples for robust deep learning. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4334–4343. [Google Scholar]
- Geifman, Y.; El-Yaniv, R. Deep active learning over the long tail. arXiv 2017, arXiv:1711.00941. [Google Scholar]
- Zou, Y.; Yu, Z.; Kumar, B.; Wang, J. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 289–305. [Google Scholar]
- Ting, K.M. A comparative study of cost-sensitive boosting algorithms. In Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000. [Google Scholar]
- Zhou, Z.H.; Liu, X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2005, 18, 63–77. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Loy, C.C.; Tang, X. Learning deep representation for imbalanced classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5375–5384. [Google Scholar]
- Khan, S.H.; Hayat, M.; Bennamoun, M.; Sohel, F.A.; Togneri, R. Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3573–3587. [Google Scholar] [PubMed]
- Sarafianos, N.; Xu, X.; Kakadiaris, I.A. Deep imbalanced attribute classification using visual attention aggregation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 680–697. [Google Scholar]
- Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class-balanced loss based on effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9268–9277. [Google Scholar]
- Wang, Y.X.; Ramanan, D.; Hebert, M. Learning to model the tail. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. (NeurIPS) 2013, 26, 1–9. [Google Scholar]
- Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.; Paluri, M.; Li, Y.; Bharambe, A.; Van Der Maaten, L. Exploring the limits of weakly supervised pretraining. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 181–196. [Google Scholar]
- Yang, Y.; Zha, K.; Chen, Y.; Wang, H.; Katabi, D. Delving into deep imbalanced regression. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 18–24 July 2021; pp. 11842–11851. [Google Scholar]
- Rothe, R.; Timofte, R.; Van Gool, L. Dex: Deep expectation of apparent age from a single image. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015; pp. 10–15. [Google Scholar] [CrossRef]
- Ricanek, K.; Tesafaye, T. Morph: A longitudinal image database of normal adult age-progression. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10–12 April 2006; pp. 341–345. [Google Scholar] [CrossRef]
- Levi, G.; Hassner, T. Age and gender classification using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 34–42. [Google Scholar] [CrossRef]
- Huo, Z.; Yang, X.; Xing, C.; Zhou, Y.; Hou, P.; Lv, J.; Geng, X. Deep age distribution learning for apparent age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 17–24. [Google Scholar] [CrossRef]
- Gao, B.-B.; Zhou, H.-Y.; Wu, J.; Geng, X. Age Estimation Using Expectation of Label Distribution Learning. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018; pp. 712–718. [Google Scholar] [CrossRef]
- Li, W.; Lu, J.; Feng, J.; Xu, C.; Zhou, J.; Tian, Q. Bridgenet: A continuity-aware probabilistic network for age estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1145–1154. [Google Scholar] [CrossRef]
- Liu, H.; Lu, J.; Feng, J.; Zhou, J. Ordinal deep learning for facial age estimation. IEEE Trans. Circuits Syst. Video Technol. (TCSVT) 2017, 29, 486–501. [Google Scholar] [CrossRef]
- Liu, X.; Zou, Y.; Kuang, H.; Ma, X. Face image age estimation based on data augmentation and lightweight convolutional neural network. Symmetry 2020, 12, 146. [Google Scholar] [CrossRef]
- Yang, T.-S.; Huang, Y.-I.; Lin, Y.-E.; Hsiu, P.-I.; Chuang, Y.-U. SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; Volume 5, pp. 1078–1084. [Google Scholar] [CrossRef]
- Yang, X.; Gao, B.-B.; Xing, C.; Huo, Z.-W.; Wei, X.-S.; Zhou, Y.; Wu, J.; Geng, X. Deep label distribution learning for apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015; pp. 102–108. [Google Scholar] [CrossRef]
- Pan, H.; Han, H.; Shan, S.; Chen, X. Mean-variance loss for deep age estimation from a face. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5285–5294. [Google Scholar] [CrossRef]
- Chang, K.Y.; Chen, C.S.; Hung, Y.P. A ranking approach for human ages estimation based on face images. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3396–3399. [Google Scholar] [CrossRef]
- Li, C.; Liu, Q.; Liu, J.; Lu, H. Learning ordinal discriminative features for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2570–2577. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Dong, M.; Le, J.; Rao, M. Using ranking-cnn for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5183–5192. [Google Scholar] [CrossRef]
- Choi, S.E.; Lee, Y.J.; Lee, S.J.; Park, K.R.; Kim, J. Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognit. (PR) 2011, 44, 1262–1281. [Google Scholar] [CrossRef]
- El Dib, M.Y.; El-Saban, M. Human age estimation using enhanced bio-inspired features (EBIF). In Proceedings of the IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 1589–1592. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Xu, X.; Zhu, C. C3AE: Exploring the limits of compact model for age estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 12587–12596. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Fan, W.; Stolfo, S.J.; Zhang, J.; Chan, P.K. AdaCost: Misclassification cost-sensitive boosting. In Proceedings of the Sixteenth International Conference on Machine Learning, San Francisco, CA, USA, 27–30 June 1999; Volume 99, pp. 97–105. [Google Scholar]
- Yang, X.; Geng, X.; Zhou, D. Sparsity Conditional Energy Label Distribution Learning for Age Estimation. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, NY, USA, 9–15 July 2016; pp. 2259–2265. [Google Scholar]
- Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; Ma, T. Learning imbalanced datasets with label-distribution-aware margin loss. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Kang, B.; Xie, S.; Rohrbach, M.; Yan, Z.; Gordo, A.; Feng, J.; Kalantidis, Y. Decoupling representation and classifier for long-tailed recognition. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; Yu, S.X. Large-scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2537–2546. [Google Scholar]
- Ren, J.; Zhang, M.; Yu, C.; Liu, Z. Balanced MSE for Imbalanced Visual Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 7926–7935. [Google Scholar]
- Torgo, L.; Ribeiro, R.P.; Pfahringer, B.; Branco, P. Smote for regression. In Proceedings of the Portuguese Conference on Artificial Intelligence, Coimbra, Portugal, 8–11 September 2013; pp. 378–389. [Google Scholar]
- Branco, P.; Torgo, L.; Ribeiro, R.P. SMOGN: A pre-processing approach for imbalanced regression. In Proceedings of the 1st International Workshop on Learning with Imbalanced Domains: Theory and Applications, PMLR, Skopje, Macedonia, 22 September 2017; pp. 36–50. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar] [CrossRef]
Metrics | MAE ↓ | GM ↓ | ||||||
---|---|---|---|---|---|---|---|---|
Shot | All | Many | Med. | Few | All | Many | Med. | Few |
Baseline | 8.08 | 7.24 | 15.49 | 24.96 | 4.56 | 4.14 | 11.21 | 20.60 |
SMOTER [45] | 8.14 | 7.42 | 14.15 | 25.28 | 4.64 | 4.30 | 9.05 | 19.46 |
SMOGN [46] | 8.03 | 7.30 | 14.02 | 25.93 | 4.63 | 4.30 | 8.74 | 20.12 |
RRT [18] | 7.81 | 7.07 | 14.06 | 25.13 | 4.35 | 4.03 | 8.91 | 16.96 |
BMC [44] | 8.08 | 7.52 | 12.47 | 23.29 | - | - | - | - |
GAI [44] | 8.12 | 7.58 | 12.27 | 23.05 | - | - | - | - |
DIAAR | 7.79 | 7.20 | 12.78 | 23.38 | 4.30 | 4.14 | 7.35 | 13.35 |
Metrics | MAE ↓ | GM ↓ | ||||||
---|---|---|---|---|---|---|---|---|
Shot | All | Many | Med. | Few | All | Many | Med. | Few |
ResNet50 [47] | 2.88 | 2.76 | 4.38 | 8.43 | 1.78 | 1.72 | 2.96 | 5.69 |
ResNet50 + OURS | 2.66 | 2.51 | 4.34 | 7.40 | 1.62 | 1.54 | 3.04 | 5.12 |
C3AE [35] | 3.36 | 3.21 | 5.25 | 9.76 | 2.16 | 2.09 | 3.34 | 7.71 |
C3AE + OURS | 3.10 | 2.86 | 6.24 | 11.18 | 1.92 | 1.80 | 5.15 | 10.26 |
SqueezeNet [48] | 3.32 | 3.14 | 5.87 | 10.36 | 2.08 | 1.99 | 4.43 | 9.28 |
SqueezeNet + OURS | 3.09 | 2.86 | 5.90 | 11.06 | 1.92 | 1.82 | 4.39 | 10.07 |
Metrics | MAE ↓ | GM ↓ | ||||||
---|---|---|---|---|---|---|---|---|
Shots | All | Many | Med. | Few | All | Many | Med. | Few |
Baseline | 2.88 | 2.76 | 4.38 | 8.43 | 1.78 | 1.72 | 2.96 | 5.69 |
SQINV | 2.92 | 2.87 | 3.49 | 5.95 | 1.85 | 1.82 | 2.27 | 4.12 |
SQINV + DDS | 2.73 | 2.62 | 3.90 | 6.42 | 1.71 | 1.64 | 2.62 | 4.21 |
ASL | 2.75 | 2.61 | 4.26 | 7.32 | 1.67 | 1.61 | 2.96 | 5.45 |
SQINV + DDS + ASL | 2.72 | 2.57 | 4.44 | 7.56 | 1.65 | 1.57 | 2.83 | 5.88 |
Metrics | MAE ↓ | GM ↓ | ||||||
---|---|---|---|---|---|---|---|---|
Shots | All | Many | Med. | Few | All | Many | Med. | Few |
2.82 | 2.65 | 4.87 | 8.45 | 1.71 | 1.63 | 3.41 | 6.36 | |
2.85 | 2.72 | 4.13 | 7.39 | 1.76 | 1.69 | 2.72 | 5.12 | |
+ | 2.77 | 2.65 | 3.98 | 6.54 | 1.71 | 1.62 | 2.79 | 4.56 |
Metrics | MAE ↓ | GM ↓ | ||||||
---|---|---|---|---|---|---|---|---|
0.001 | 0.01 | 0.1 | 1 | 0.001 | 0.01 | 0.1 | 1 | |
SQINV + DDS + ASL | 2.79 | 2.72 | 2.79 | 3.00 | 1.73 | 1.65 | 1.74 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Li, X. Adaptive Age Estimation towards Imbalanced Datasets. Appl. Sci. 2023, 13, 10182. https://doi.org/10.3390/app131810182
Dong Z, Li X. Adaptive Age Estimation towards Imbalanced Datasets. Applied Sciences. 2023; 13(18):10182. https://doi.org/10.3390/app131810182
Chicago/Turabian StyleDong, Zhiang, and Xiaoqiang Li. 2023. "Adaptive Age Estimation towards Imbalanced Datasets" Applied Sciences 13, no. 18: 10182. https://doi.org/10.3390/app131810182
APA StyleDong, Z., & Li, X. (2023). Adaptive Age Estimation towards Imbalanced Datasets. Applied Sciences, 13(18), 10182. https://doi.org/10.3390/app131810182