Research on the Clothing Classification of the She Ethnic Group in Different Regions Based on FPA-CNN
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Procedure
2.2. Experimental Samples
2.3. Experimental Method
2.3.1. Color Feature Extraction of She Ethnic Groups in Different Regions
- (1)
- Color Space Quantization
- (2)
- Color Histogram Features
- (3)
- Color moment features
2.3.2. Fusion of She Ethnic Color Features in Different Regions Based on the FPA
- (1)
- Feature Fusion
- (2)
- Feature Dimensionality Reduction
2.3.3. The Construction of the She Ethnic Clothing Classifier Based on the CNN
- (1)
- Convolutional Layer
- (2)
- Pooling Layer
3. Results and Discussion
3.1. Color Analysis of She Ethnic Clothing
3.2. She Ethnic Clothing Classification Based on FPA-CNN
3.2.1. Classification Index Selection
3.2.2. Analysis of the She Ethnic Clothing Classification Results
3.3. Comparative Analysis of She Ethnic Clothing Classification
3.3.1. Comparative Analysis of Parameter Optimization Methods
Algorithm 1 Pseudo code of FPA [13] |
Objective min or max , Initialize a population of flowers/pollen gametes with random solutions Find the best solution in the initial population Define a switch probability While for i = 1: (all flowers in the population) if rand < p, Draw a (d-dimensional) step vector L which obeys a Lévy distribution Global pollination via else Draw from a uniform distribution in Randomly choose j and k among all the solutions Do local pollination via end if Evaluate new solutions If new solutions are better, update them in the population end for Find the current best solution end while |
3.3.2. Comparative Analysis of Feature Fusion Methods
3.3.3. Comparative Analysis of Classification Models
3.3.4. Comparative Analysis of Classification Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.Y. She’s costumes heritage context in Zhejiang and Fujian Provinces based on ethnic migration history. J. Text. Res. 2017, 38, 116–120. [Google Scholar]
- Yan, J.; Fan, X.R.; Chen, L.Y. Evolution causes analysis of She′s ancient costume from perspective of cultural change. J. Text. Res. 2012, 33, 111–115. [Google Scholar]
- Lin, H.Z. Evaluation on the Protection and Development of Intangible Cultural Heritage in She Township, Jingning from the Perspective of Ecological Civilization. Sustainability 2023, 15, 2330. [Google Scholar]
- Jin, Y.Z. Phoenix Nirvana—Cultural Changes of She Ethnic Group in Southwestern Zhejiang in the Context of Tourism. J. East. Asian. Stud. 2020, 20, 126–128. [Google Scholar] [CrossRef]
- Chen, X.M.; Bai, J.L. Application of Traditional Apparel Pattern of She Nationality in Fujian Province to the Adolescents’ Design. In Proceedings of the 10th Textile Bioengineering and Informatics Symposium, Wuhan, China, 16 May 2017. [Google Scholar]
- Chang, Y.; Mukai, N. Color feature based dominant color extraction. IEEE Access 2022, 10, 93055–93061. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, J.; Liang, H.E.; Li, Z.J.; Liu, J.J. Intelligent inspection of dominant colors for Chinese traditional folk Yunjian. J. Text. Res. 2017, 38, 110–115,123. [Google Scholar]
- Liu, S.G.; Jiang, Y.X.; Luo, H.R. Attention-aware color theme extraction for fabric images. Text. Res. J. 2018, 88, 552–565. [Google Scholar]
- Ding, X.J.; Zou, C.H.; Chen, J.Y.; Zou, F.Y. Extraction and classification of She nationality clothing via visual features. Text. Res. J. 2016, 86, 1259–1269. [Google Scholar]
- Zhang, N.; Xiang, J.; Wang, L.; Xiong, N.; Gao, W.; Pan, R. Image retrieval of wool fabric. Part II: Based on low-level color features. Text. Res. J. 2020, 90, 797–808. [Google Scholar]
- Huang, D.Y.; Liu, L.; Fu, X.D.; Huang, Q.S. Clothing Retrieval via Co-segmentation and Feature Matching. J. Comput.-Aided Des. Comput. Graph. 2017, 29, 1075–1084. [Google Scholar]
- Gupta, M.; Bhatnagar, C.; Jalal, A.S. Clothing Image Retrieval based on Multiple Features for Smarter Shopping. In Proceedings of the 6th International Conference on Smart Computing and Communications, Kurukshetra, India, 12 July 2017. [Google Scholar]
- Yang, X.S. Flower Pollination Algorithm for Global Optimization. Available online: https://arxiv.org/abs/1312.5673v1 (accessed on 26 August 2023).
- Nawaz, M.M.T.; Hasan, R.; Hasan, M.A. Automatic categorization of traditional clothing using convolutional neural network. In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science, Singapore, 6–8 June 2018. [Google Scholar]
- Huo, P.; Wang, Y.H.; Liu, Q.J. A part-based and feature fusion method for clothing classification. In Proceedings of the Advances in Multimedia Information Processing-PCM2016: 17th Pacific-Rim Conference on Multimedia, Xi’an, China, 15 September 2016; pp. 231–241. [Google Scholar]
- Sun, Y.H.; Liu, Q.J. Attribute recognition from clothing using a faster R-CNN based multitask network. Int. J. Wavelets. Multi. 2018, 16, 1840009. [Google Scholar] [CrossRef]
- Wu, S.M.; Liu, L.; Fu, X.D.; Liu, L.J.; Huang, Q.S. Human detection and multi-task learning for minority clothing recognition. J. Imag. Graph. 2019, 24, 562–572. [Google Scholar]
- Gustavsson, O.; Ziegler, T.; Welle, M.C.; Butepage, J.; Varava, A.; Krafic, D. Cloth manipulation based on category classification and landmark detection. Int. J. Adv. Robot. Syst. 2022, 19, 1–17. [Google Scholar]
- Li, D.; Wan, X.F.; Wang, J. Clothing style recognition approach using Fourier descriptors and support vector machines. J. Text. Res. 2017, 38, 122–127. [Google Scholar]
- Tuo, W.; Wang, X.Y.; Gao, Y.K.; Yu, Y.Y.; Hao, X.X. Clothing style identification based on improved edge detection algorithm. J. Text. Res. 2021, 42, 157–162. [Google Scholar]
- Wu, H.; Ding, X.J.; Li, Q.M.; Du, L.; Zou, F.Y. Classification of women’s trousers silhouette using convolution neural network CaffeNet model. J. Text. Res. 2019, 40, 117–121. [Google Scholar]
- Huang, C.C.; Yuan, J.; Qin, X. Research and application of Fine-Grained image classification based on small collar dataset. Front. Comput. Neurosc. 2020, 15, 766284. [Google Scholar]
- Yin, G.C.; Luo, R.L. Research on Recognition and Classification of Garment Collar Type based on Convolutional Neural Network. Adv. Text. Technol. 2020, 28, 48–53. [Google Scholar]
- Wang, Z.J.; Turko, R.; Shaikh, O.; Park, H. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization. IEEE T. Vis. Comput. Gr. 2021, 27, 1396–1406. [Google Scholar] [CrossRef]
- Alirezazadeh, P.; Dornaika, F.; Moujahid, A. Deep learning with discriminative margin loss for cross-domain consumer-to-shop clothes retrieval. Sensors 2022, 7, 2660. [Google Scholar] [CrossRef]
- Xia, F. Research on Patterns of She Nationality Garments, 1st ed.; Zhejiang People’s Fine Arts Publishing House: Hangzhou, China, 2017; pp. 32–129. [Google Scholar]
- Yan, J.; Chen, L.Y. Research on the Change and Inheritance of She Costume Culture, 1st ed.; China Textile Press: Beijing, China, 2016; pp. 24–109. [Google Scholar]
- Hua, J.Z.; Liu, G.H.; Song, S.X. Content-Based Image Retrieval Using Color Volume Histograms. Int. J. Pattern. Recogn. 2019, 33, 1940010. [Google Scholar] [CrossRef]
- Porebski, A.; Hoang, V.T.; Vandenbroucke, N.; Hamad, D. Multi-color space local binary pattern-based feature selection for texture classification. J. Electron. Imaging 2018, 1, 011010. [Google Scholar]
- Hung, K.C.; Lin, S.F. An Adaptive Dynamic Multi-Template Correlation Filter for Robust Object Tracking. Appl. Sci. 2022, 20, 10221. [Google Scholar] [CrossRef]
- Kim, E.K.; Lee, H.; YongKim, J.; Kim, B.; Kim, J.; Kim, S. Color Decision System for Ambiguous Color Boundary. In Proceedings of the 2019 International Conference on Fuzzy Theory and Its Applications (iFUZZY), New Taipei City, Taiwan, 7–10 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Zhang, C. Research of Obiect Tracking Algorithm based on Color Space Nonuniform Quantization and Multi-Information Fusion; Changsha University of Science and Technology: Changsha, China, 2017. [Google Scholar]
- Khan, U.A.; Javed, A. A hybrid CBIR system using novel local tetra angle patterns and color moment features. J. King Saud. Univ.-Com. 2022, 34, 7856–7873. [Google Scholar] [CrossRef]
- Bansal, J.C. Particle swarm optimization. In Evolutionary and Swarm Intelligence Algorithms; Springer: Berlin/Heidelberg, Germany, 2019; pp. 11–23. [Google Scholar]
- Song, W.Q.; Ding, Z.W.; Mao, B.N.; Xu, B.; Gong, H.P.; Kang, J.; Zhao, C.L. Similar Signal Recognition Method for φ-OTDR System based on Multi-Scale Feature Fusion. Chin. J. Lasers 2023. Available online: https://link.cnki.net/urlid/31.1339.TN.20230808.0917.024 (accessed on 20 June 2023).
- Liu, X.Y.; Li, G.; Chen, W.K.; Liu, B.H.; Chen, M.; Lu, S.L. Detection of Dense Citrus Fruits by Combining Coordinated Attention and Cross-Scale Connection with Weighted Feature Fusion. Appl. Sci. 2022, 13, 6600. [Google Scholar] [CrossRef]
- Shahzad, F.; Huang, Z.; Memon, W.H. Process Monitoring Using Kernel PCA and Kernel Density Estimation-Based SSGLR Method for Nonlinear Fault Detection. Appl. Sci. 2022, 12, 2981. [Google Scholar] [CrossRef]
- Li, Z.W.; Liu, F.; Yang, W.J.; Peng, S.H.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 1 January 2015. [Google Scholar]
- Zafar, A.; Aamir, M.; Mohd Nawi, N.; Arshad, A.; Riaz, S.; Alruban, A.; Dutta, A.K.; Almotairi, S. A Comparison of Pooling Methods for Convolutional Neural Networks. Appl. Sci. 2022, 12, 8643. [Google Scholar] [CrossRef]
- Jia, J.; Cao, J.W.; Xu, P.H.; Lin, R.B.; Sun, X.W. The color composition analysis of She costumes based on the nexus network model. J. Silk. 2022, 11, 100–107. [Google Scholar]
- Cao, J.W.; Jia, J.; Xu, P.H.; Lin, R.B.; Sun, X.W. Coloration association rules parsing of She nationality costumes. J. Silk. 2023, 4, 100–106. [Google Scholar]
- Kaya, C.B.; Kaya, E. A novel approach based to neural network and flower pollination algorithm to predict number of COVID-19 cases. Balkan J. Electr. Comput. Eng. 2021, 4, 327–336. [Google Scholar]
- Abdel-Basset, M.; Shawky, L.A. Flower pollination algorithm: A comprehensive review. Artif. Intell. Rev. 2019, 52, 2533–2557. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An Overview of Variants and Advancements of PSO Algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Priya, S.; Kumar, K. Pradeep Mohan. Binary bat algorithm based feature selection with deep reinforcement learning technique for intrusion detection system. Soft Comput. 2023, 27, 10777–10788. [Google Scholar] [CrossRef]
- Saadat, J.; Moallem, P.; Koofigar, H. Training echo state neural network using harmony search algorithm. Int. J. Artif. Intell. 2017, 1, 163–179. [Google Scholar]
- Kaya, E.; Kaya, C.B. A novel neural network training algorithm for the identification of nonlinear static systems: Artificial bee colony algorithm based on effective scout bee stage. Symmetry 2021, 13, 419. [Google Scholar] [CrossRef]
- Mergos, P.E.; Yang, X.S. Flower pollination algorithm parameters tuning. Soft Comput. 2021, 25, 14429–14447. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E. Quick flower algorithm (QFPA) and its performance on neural network training. Soft Comput. 2022, 26, 9729–9750. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Deng, W.X.; Wang, Y.M.; Zhu, Z.F. Classification of clothing images based on a parallel convolutional neural network and random vector functional link optimized by the grasshopper optimization algorithm. Text. Res. J. 2022, 92, 1415–1428. [Google Scholar] [CrossRef]
Region | Color | ΔE | Rate/% | H/S/V | Color | ΔE | Rate/% | H/S/V | Color | ΔE | Rate/% | H/S/V | Color | ΔE | Rate/% | H/S/V |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jingning | 1.5 | 96.65 | [207, 22, 6] | 2.9 | 1.20 | [17, 38, 81] | 2.3 | 1.10 | [6, 51, 51] | 1.7 | 1.05 | [356, 55, 69] | ||||
Fu’an | 1.7 | 96.43 | [45, 49, 5] | 2.3 | 1.36 | [0, 71, 66] | 4.5 | 1.31 | [7, 45, 61] | 1.8 | 0.90 | [4, 59, 35] | ||||
Luoyuan | 0.5 | 55.91 | [239, 46, 1] | 3.9 | 10.76 | [0, 50, 88] | 3.4 | 8.79 | [358, 35, 91] | 3.2 | 6.79 | [10, 17, 88] | ||||
1.3 | 5.41 | [21, 13, 67] | 3.2 | 4.59 | [55, 44, 84] | 2.5 | 4.16 | [9, 75, 78] | 3.0 | 3.59 | [24, 54, 85] | |||||
Xiapu | 2.0 | 94.23 | [69, 66, 3] | 1.8 | 2.31 | [8, 66, 56] | 2.9 | 1.82 | [16, 49, 57] | 4.0 | 0.83 | [230, 68, 24] | ||||
1.1 | 0.81 | [12, 57, 41] | ||||||||||||||
Fuding | 0.6 | 87.66 | [3, 71, 1] | 2.5 | 4.13 | [2, 79, 72] | 1.2 | 3.24 | [0, 84, 53] | 2.7 | 1.90 | [338, 86, 67] | ||||
3.4 | 1.76 | [358, 70, 32] | 3.1 | 1.31 | [5, 56, 62] |
Category | Jingning | Fu’an | Luoyuan | Xiapu | Fuding | Classification Accuracy/% |
---|---|---|---|---|---|---|
Jingning | 12 | 0 | 0 | 0 | 0 | 100 |
Fu’an | 0 | 13 | 0 | 0 | 0 | 100 |
Luoyuan | 0 | 0 | 14 | 0 | 0 | 100 |
Xiapu | 0 | 0 | 0 | 20 | 1 | 93.75 |
Fuding | 0 | 0 | 0 | 0 | 14 | 100 |
Color Feature | Method | Training Time/s | Classification Accuracy/% |
---|---|---|---|
Single-color feature | t1 | 24.56 | 86.49 |
t2 | 22.37 | 81.08 | |
Multi-color feature fusion | t1 + t2 | 23.45 | 87.83 |
0.9 t1 + 0.1 t2 | 21.69 | 89.19 | |
0.8 t1 + 0.2 t2 | 21.42 | 90.54 | |
0.7 t1 + 0.3 t2 | 21.39 | 93.24 | |
0.6 t1 + 0.4 t2 | 22.07 | 94.59 | |
0.5 t1 + 0.5 t2 | 21.59 | 91.89 | |
0.4 t1 + 0.6 t 2 | 22.17 | 90.54 | |
0.3 t1 + 0.7 t2 | 22.49 | 86.48 | |
0.2 t1 + 0.8 t2 | 21.65 | 83.78 | |
0.1 t1 + 0.9 t2 | 21.89 | 82.43 | |
Proposed method | 13.25 | 97.29 |
Methods | Training Time/s | Average Classification Accuracy/% | Highest Classification Accuracy/% |
---|---|---|---|
CNN | 25.14 | 91.94 | 93.24 |
Proposed method | 12.15 | 98.38 | 98.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Li, T.; Chen, J.; Ma, L.; Zou, F. Research on the Clothing Classification of the She Ethnic Group in Different Regions Based on FPA-CNN. Appl. Sci. 2023, 13, 9676. https://doi.org/10.3390/app13179676
Ding X, Li T, Chen J, Ma L, Zou F. Research on the Clothing Classification of the She Ethnic Group in Different Regions Based on FPA-CNN. Applied Sciences. 2023; 13(17):9676. https://doi.org/10.3390/app13179676
Chicago/Turabian StyleDing, Xiaojun, Tao Li, Jingyu Chen, Ling Ma, and Fengyuan Zou. 2023. "Research on the Clothing Classification of the She Ethnic Group in Different Regions Based on FPA-CNN" Applied Sciences 13, no. 17: 9676. https://doi.org/10.3390/app13179676
APA StyleDing, X., Li, T., Chen, J., Ma, L., & Zou, F. (2023). Research on the Clothing Classification of the She Ethnic Group in Different Regions Based on FPA-CNN. Applied Sciences, 13(17), 9676. https://doi.org/10.3390/app13179676