Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs
Abstract
:1. Introduction
2. TU Delft Campus Geothermal Project
3. Methods
4. Source–Injection–Borehole Offset
5. Temperature Effects
6. Undesired Effects
6.1. Recording Noise
6.2. Survey Repeatability Errors
6.3. Near-Surface Temperature Change
6.4. Casing Effect
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CSEM | Controlled-source electromagnetic |
TU Delft | Delft University of Technology |
EM | Electromagnetic |
ERT | Electrical resistivity tomography |
MT | Magnetotelluric |
SNR | Signal-to-noise ratio |
FDEM | Frequency-domain electromagnetic |
2D | Two-dimensional |
1D | One-dimensional |
3D | Three-dimensional |
References
- Pirouti, M.; Bagdanavicius, A.; Ekanayake, J.; Wu, J.; Jenkins, N. Energy consumption and economic analyses of a district heating network. Energy 2013, 57, 149–159. [Google Scholar] [CrossRef]
- Mazhar, A.R.; Liu, S.; Shukla, A. A state of art review on the district heating systems. Renew. Sustain. Energy Rev. 2018, 96, 420–439. [Google Scholar] [CrossRef]
- Directorate-General for Energy. Drivers of Recent Energy Consumption Trends Across Sectors in EU28. European Commission 2018. Available online: https://energy.ec.europa.eu/system/files/2018-09/energy_consumption_trends_workshop_report-september_2018_0.pdf (accessed on 17 May 2022).
- Lake, A.; Rezaie, B.; Beyerlein, S. Review of district heating and cooling systems for a sustainable future. Renew. Sustain. Energy Rev. 2017, 67, 417–425. [Google Scholar] [CrossRef]
- Chandrasekharam, D.; Bundschuh, J. Low-Enthalpy Geothermal Resources for Power Generation; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Muffler, P.; Cataldi, R. Methods for regional assessment of geothermal resources. Geothermics 1978, 7, 53–89. [Google Scholar] [CrossRef]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Munoz, G. Exploring for geothermal resources with electromagnetic methods. Surv. Geophys. 2014, 35, 101–122. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; Dufour, J. On the environmental suitability of high-and low-enthalpy geothermal systems. Geothermics 2015, 53, 27–37. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.; Morales, M.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Kaya, E.; Zarrouk, S.J.; O’Sullivan, M.J. Reinjection in geothermal fields: A review of worldwide experience. Renew. Sustain. Energy Rev. 2011, 15, 47–68. [Google Scholar] [CrossRef]
- Bödvarsson, G.S.; Tsang, C.F. Injection and thermal breakthrough in fractured geothermal reservoirs. J. Geophys. Res. Solid Earth 1982, 87, 1031–1048. [Google Scholar] [CrossRef]
- Stefansson, V.-đ. Geothermal reinjection experience. Geothermics 1997, 26, 99–139. [Google Scholar] [CrossRef]
- Axelsson, G.; Stefánsson, V.; Xu, Y. Sustainable management of geothermal resources. In Proceedings of the International Geothermal Conference, Reykjavik, Iceland, 14–17 September 2003; pp. 40–48. Available online: https://orkustofnun.is/gogn/unu-gtp-sc/UNU-GTP-SC-22-11.pdf (accessed on 25 November 2022).
- Axelsson, G.; Stefánsson, V.; Björnsson, G.; Liu, J. Sustainable management of geothermal resources and utilization for 100–300 years. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; Volume 8, pp. 40–48. Available online: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0507.pdf (accessed on 24 November 2022).
- Poulsen, S.; Balling, N.; Nielsen, S. A parametric study of the thermal recharge of low enthalpy geothermal reservoirs. Geothermics 2015, 53, 464–478. [Google Scholar] [CrossRef]
- O’Sullivan, M.J.; Pruess, K.; Lippmann, M.J. State of the art of geothermal reservoir simulation. Geothermics 2001, 30, 395–429. [Google Scholar] [CrossRef]
- Wang, Y.; Voskov, D.; Khait, M.; Saeid, S.; Bruhn, D. Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field. Renew. Energy 2021, 179, 641–651. [Google Scholar] [CrossRef]
- Bruhn, D.F.; Wolf, K.; Woning, M.; Nick, H.M.; Willems, C.J.L. The Delft Aardwarmte Project (DAP): Providing renewable heat for the university campus and a research base for the geothermal community. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015; Available online: https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/35016.pdf (accessed on 3 August 2021).
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Nabighian, M.N. Electromagnetic Methods in Applied Geophysics: Voume 1, Theory; Society of Exploration Geophysicists: Houston, TX, USA, 1988. [Google Scholar] [CrossRef]
- Nabighian, M.N. Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B; Society of Exploration Geophysicists: Houston, TX, USA, 1991. [Google Scholar] [CrossRef]
- Schön, J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics; Elsevier: Amsterdam, The Netherlands, 2015; Available online: https://shop.elsevier.com/books/physical-properties-of-rocks/schon/978-0-08-100404-3 (accessed on 9 August 2021).
- Balasco, M.; Lapenna, V.; Rizzo, E.; Telesca, L. Deep electrical resistivity tomography for geophysical investigations: The state of the art and future directions. Geosciences 2022, 12, 438. [Google Scholar] [CrossRef]
- Chave, A.D.; Jones, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Fraser Smith, A.; Coates, D. Large-amplitude ULF electromagnetic fields from BART. Radio Sci. 1978, 13, 661–668. [Google Scholar] [CrossRef]
- Egbert, G.D. Robust multiple-station magnetotelluric data processing. Geophys. J. Int. 1997, 130, 475–496. [Google Scholar] [CrossRef]
- Abdelfettah, Y.; Sailhac, P.; Larnier, H.; Matthey, P.; Schill, E. Continuous and time-lapse magnetotelluric monitoring of low volume injection at Rittershoffen geothermal project, northern Alsace–France. Geothermics 2018, 71, 1–11. [Google Scholar] [CrossRef]
- Constable, S.; Srnka, L.J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 2007, 72, WA3–WA12. [Google Scholar] [CrossRef]
- Ziolkowski, A.; Slob, E. Introduction to Controlled-source Electromagnetic Methods: Detecting Subsurface Fluids; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Myer, D.; Constable, S.; Key, K. Broad-band waveforms and robust processing for marine CSEM surveys. Geophys. J. Int. 2011, 184, 689–698. [Google Scholar] [CrossRef]
- Colombo, D.; McNeice, G.W. Quantifying surface-to-reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir. Geophysics 2013, 78, E281–E297. [Google Scholar] [CrossRef]
- Colombo, D.; McNeice, G.W. Surface to borehole CSEM| for waterflood monitoring in Saudi Arabia: Data analysis. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Houston, TX, USA, 2018; pp. 868–872. [Google Scholar] [CrossRef]
- Olufemi, O.; Bello, O.; Olaywiola, O.; Teodoriu, C.; Salehi, S.; Osundare, O. Geothermal Heat Recovery from Matured Oil and Gas Fields in Nigeria–Well Integrity Considerations and Profitable Outlook. In Proceedings of the 45th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 10–12 February 2020; pp. 1–12. Available online: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2020/Bello.pdf (accessed on 18 May 2023).
- DeVault, B.; Jeremiah, J. Tectonostratigraphy of the nieuwerkerk formation (delfland subgroup), west Netherlands basin. AAPG Bull. 2002, 86, 1679–1707. [Google Scholar] [CrossRef]
- Donselaar, M.E.; Groenenberg, R.M.; Gilding, D.T. Reservoir geology and geothermal potential of the Delft Sandstone Member in the West Netherlands Basin. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 1–9. Available online: https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/12054.pdf (accessed on 18 May 2023).
- Vardon, P.; Bruhn, D.; Steiginga, A.; Cox, B.; Abels, H.; Barnhoorn, A.; Drijkoningen, G.; Slob, E.; Wapenaar, K. A Geothermal Well Doublet for Research and Heat Supply of the TU Delft Campus. arXiv 2003, arXiv:2003.11826. [Google Scholar] [CrossRef]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Not available as an Electronic Version; Pergamon Press: Oxford, NY, USA, 1966; pp. 19–21. [Google Scholar]
- Hunziker, J.; Thorbecke, J.; Slob, E. The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem. Geophysics 2015, 80, F1–F18. [Google Scholar] [CrossRef]
- Werthmüller, D. An open-source full 3D electromagnetic modeler for 1D VTI media in Python: Empymod. Geophysics 2017, 82, WB9–WB19. [Google Scholar] [CrossRef]
- Heagy, L.J.; Cockett, R.; Kang, S.; Rosenkjaer, G.K.; Oldenburg, D.W. A framework for simulation and inversion in electromagnetics. Comput. Geosci. 2017, 107, 1–19. [Google Scholar] [CrossRef]
- Mittet, R.; Morten, J.P. Detection and imaging sensitivity of the marine CSEM method. Geophysics 2012, 77, E411–E425. [Google Scholar] [CrossRef]
- Havsgård, G.B.; Jensen, H.R.; Kurrasch, A.; Jones, H.; Austin, P.; Thompson, A. Low Noise Ag/AgCl Electric Field Sensor System for Marine CSEM and MT Applications; Geoservices ASA: Lysaker, Norway, 2011; Available online: https://emgs.com/wp-content/uploads/2021/08/Low-Noise-Ag_AgCl-Electric-Field-Sensor-System-for-Marine-CSEM-and-MT-Applications.pdf (accessed on 6 January 2023).
- Strack, K.-M. Exploration with Deep Transient Electromagnetics; Elsevier: Amsterdam, The Netherlands, 1992; Volume 373, Available online: https://www.researchgate.net/publication/288945453_Exploration_with_Deep_Transient_Electromagnetics (accessed on 27 June 2022).
- Wirianto, M.; Mulder, W.; Slob, E. A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophys. J. Int. 2010, 181, 741–755. [Google Scholar] [CrossRef]
- Jacobs, A.F.; Heusinkveld, B.G.; Holtslag, A.A. Long-term record and analysis of soil temperatures and soil heat fluxes in a grassland area, The Netherlands. Agric. For. Meteorol. 2011, 151, 774–780. [Google Scholar] [CrossRef]
- Kaufman, A.A. The electrical field in a borehole with a casing. Geophysics 1990, 55, 29–38. [Google Scholar] [CrossRef]
- Wu, X.; Habashy, T.M. Influence of steel casings on electromagnetic signals. Geophysics 1994, 59, 378–390. [Google Scholar] [CrossRef]
- Swidinsky, A.; Edwards, R.N.; Jegen, M. The marine controlled source electromagnetic response of a steel borehole casing: Applications for the NEPTUNE Canada gas hydrate observatory. Geophys. Prospect. 2013, 61, 842–856. [Google Scholar] [CrossRef]
- Orujov, G.; Streich, R.; Swidinsky, A. Modeling and inversion of electromagnetic data collected over steel casings: An analysis of two controlled field experiments in Colorado. Lead. Edge 2022, 41, 114–121. [Google Scholar] [CrossRef]
- Heagy, L.J.; Oldenburg, D.W. Modeling electromagnetics on cylindrical meshes with applications to steel-cased wells. Comput. Geosci. 2019, 125, 115–130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayieb, M.; Werthmüller, D.; Drijkoningen, G.; Slob, E. Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs. Appl. Sci. 2023, 13, 9399. https://doi.org/10.3390/app13169399
Eltayieb M, Werthmüller D, Drijkoningen G, Slob E. Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs. Applied Sciences. 2023; 13(16):9399. https://doi.org/10.3390/app13169399
Chicago/Turabian StyleEltayieb, Mahmoud, Dieter Werthmüller, Guy Drijkoningen, and Evert Slob. 2023. "Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs" Applied Sciences 13, no. 16: 9399. https://doi.org/10.3390/app13169399
APA StyleEltayieb, M., Werthmüller, D., Drijkoningen, G., & Slob, E. (2023). Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs. Applied Sciences, 13(16), 9399. https://doi.org/10.3390/app13169399