Geo-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Scope
2.2. Data Sources and Preprocessing
2.3. Vegetation Ecophysiology Assessment Using the Normalized Burn Ratio (NBR) Model
2.4. Spatial Estimation of Vegetation Biomass Using the Net Primary Production (NPP) Model
3. Results
3.1. NBR Time Series of Vegetation Health across the Landscape
3.2. Severity of Ecophysiological Conditions of Landscape Vegetation
3.3. Global Productivity of Ecosystems’ Vegetation across the Landscape
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, B.; Hashimoto, S.; Cushman, S.A. A two concentric circles model incorporating availability of ecosystem services and affordability of humans to clarify the ecological security concept. Ecol. Model. 2023, 481, 110343. [Google Scholar] [CrossRef]
- OECD-FAO. L’agriculture en Afrique subsaharienne: Perspectives et enjeux de la décennie à venir. In Perspectives Agricoles de l’OCDE et de la FAO 2016–2025; FAO: Rome, Italy, 2016; pp. 63–104. [Google Scholar]
- Peng, J.; Wang, X.; Liu, Y.; Zhao, Y.; Xu, Z.; Zhao, M.; Qiu, S.; Wu, J. Urbanization impact on the supply-demand budget of ecosystem services: Decoupling analysis. Ecosyst. Serv. 2020, 44, 101139. [Google Scholar] [CrossRef]
- Amharref, M.; Aassine, S.; Bernoussi, A.S.; Haddouchi, B.Y. Cartographie de la vulnérabilité à la pollution des eaux souterraines: Application à la plaine du Gharb (Maroc). Rev. Sci. L’eau 2007, 20, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Seguin, B.; Soussana, J.-F. Emissions de gaz à effet de serre et changement climatique: Causes et conséquences observées pour l’agriculture et l’élevage. Courr. L’environ. L’inra 2008, 55, 79–91. [Google Scholar]
- Folega, F.; Datche-Danha, K.E.; Folega, A.A.; Woegan, A.Y.; Wala, K.; Akpagana, K. Diversité des services écosystémiques et utilisation des terres dans le paysage du socle Eburnéen au Togo. Rev. Nat. Technol. 2022, 14, 61–75. [Google Scholar]
- Kanda, M.; Djaneye-Boundjou, G.; Wala, K.; Gnandi, K.; Batawila, K.; Sanni, A.; Akpagana, K. Application des pesticides en agriculture maraichère au Togo. VertigO 2013, 13, 1–19. [Google Scholar] [CrossRef]
- Abalo-Esso, M.; Agossou, G.-T.; Blavet, D.; Hien, E.; Chotte, J.L. Dégradation de la fertilité des sols et de l’environnement dans la Région des Savanes au Nord-Togo: Analyse des perceptions et stratégies d’adaptation indigènes. Eur. Sci. J. 2021, 17, 40–65. [Google Scholar] [CrossRef]
- Anani, C.K.S.; Tounou, A.K.; Agboka, K.; Gnon, T.; Kotor, K.E.S. Analyse des impacts agroenvironnementaux et socioéconomiques des systèmes de culture d’ananas (Ananas comosus L.) au Sud-Togo. J. Appl. Biosci. 2020, 153, 15807–15820. [Google Scholar]
- Gnissien, M.; Coulibaly, K.; Senou, I.; Yameogo, T.J.; Nacro, B.H. Diversité des systèmes de cultures et des modes de gestion des ligneux arborés et arbustifs des parcs agroforestiers en zone nord-soudanienne du Burkina Faso. Sci. Nat. Agron. 2022, 41, 81–89. [Google Scholar]
- Berger, K.; Hank, T.; Halabuk, A.; Rivera-Caicedo, J.P.; Wocher, M.; Mojses, M.; Gerhátová, K.; Tagliabue, G.; Dolz, M.M.; Venteo, A.B.P. Assessing non-photosynthetic cropland biomass from spaceborne hyperspectral imagery. Remote Sens. 2021, 13, 4711. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments. Carbon Balance Manag. 2017, 12, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Riva, M.J.; Daliakopoulos, I.N.; Eckert, S.; Hodel, E.; Liniger, H. Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl. Geogr. 2017, 86, 8–21. [Google Scholar] [CrossRef]
- Evangelides, C.; Nobajas, A. Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration. Remote Sens. Appl. Soc. Environ. 2020, 17, 100283. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Cardil, A.; Mola-Yudego, B.; Blázquez-Casado, Á.; González-Olabarria, J.R. Fire and burn severity assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. J. Environ. Manag. 2019, 235, 342–349. [Google Scholar] [CrossRef]
- Gadédjisso-Tossou, A. Understanding farmers’ perceptions of and adaptations to climate change and variability: The case of the Maritime, Plateau and Savannah Regions of Togo. Agric. Sci. 2015, 6, 1441. [Google Scholar] [CrossRef] [Green Version]
- Munang, R.; Andrews, J.; Alverson, K.; Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ. Sci. Policy Sustain. Dev. 2014, 56, 18–24. [Google Scholar] [CrossRef]
- Adjanke, A.; Tona, K.; Gbeassor, M. Effects of frequency of feeding on feed intake, growth and survival of Nile Tilapia, Oreochromis niloticus reared in hapas implanted in pond in Togo. Int. J. Fish. Aquat. Stud. 2021, 9, 350–353. [Google Scholar] [CrossRef]
- Akodéwou, A.; Oszwald, J.; Gazull, L.; Akpavi, S.; Akpagana, K.; Gond, V.; Saidi, S. Land Use and Land Cover Dynamics Analysis of the Togodo Protected Area and Its Surroundings in Southeastern Togo, West Africa. Sustainability 2020, 12, 5439. [Google Scholar] [CrossRef]
- Akodéwou, A.; Godron, M. Agricultural land-use increases flo-ral species richness in tropical dry forest and savannah ecosystems in West Africa. Diversity 2022, 14, 106. [Google Scholar] [CrossRef]
- Abalo, M.; Badabate, D.; Fousseni, F.; Kpérkouma, W.; Koffi, A. Landscape-based analysis of wetlands patterns in the Ogou River basin in Togo (West Africa). Environ. Chall. 2021, 2, 100013. [Google Scholar] [CrossRef]
- Gnansounou, S.C.; Salako, K.V.; Sagoe, A.A.; Mattah, P.A.D.; Aheto, D.W.; Glèlè Kakaï, R. Mangrove ecosystem services, associated threats and implications for wellbeing in the Mono Transboundary Biosphere Reserve (Togo-Benin), West-Africa. Sustainability 2022, 14, 2438. [Google Scholar] [CrossRef]
- Sodokin, K.; Nyatefe, V. Cash transfers, climate shocks vulnerability and households’ resilience in Togo. Discov. Sustain. 2021, 2, 3. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Welcome to the Copernicus Open Access Hub. 2022. Available online: https://scihub.copernicus.eu/ (accessed on 16 June 2023).
- Directorate for Space, Security & Migration, European Commission’s Joint Research Centre. Copernicus Emergency Management Service. 2017. Available online: https://emergency.copernicus.eu/ (accessed on 16 June 2023).
- European Space Agency (ESA). Sentinel-2 User Handbook; ESA Standard Document Date; ESA-HQ: Paris, France, 2015; Volume 1, pp. 1–64. [Google Scholar]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Plakman, V.; Janssen, T.; Brouwer, N.; Veraverbeke, S. Mapping species at an individual-tree scale in a temperate forest, using sentinel-2 images, airborne laser scanning data, and random forest classification. Remote Sens. 2020, 12, 3710. [Google Scholar] [CrossRef]
- Folega, F.; Atakpama, W.; Wala, K.; Mukete, B.; Shozo, S.; Akira, O.; Zhao, X.-h.; Akpagana, K. Land use patterns and tree species diversity in the Volta Geological Unit, Togo. J. Mt. Sci. 2019, 16, 1869–1882. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E. Combining landsat TM/ETM+ and HJ-1 A/B CCD sensors for monitoring coastal water quality in Hong Kong. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1898–1902. [Google Scholar] [CrossRef]
- Lamboni, M. Analyses des Données RGPH4-Novembre 2010 (État Matrimonial et Nupitialité); Institut National de la Statistique et des Études Économiques et Démographiques (INSEED-TOGO): Lomé, Togo, 2016. [Google Scholar]
- Storey, E.A.; Lee West, K.R.; Stow, D.A. Utility and optimization of LANDSAT-derived burned area maps for southern California. Int. J. Remote Sens. 2021, 42, 486–505. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Henareh Khalyani, A. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A new index for sentinel-2 imagery. Remote Sens. 2022, 14, 1727. [Google Scholar] [CrossRef]
- Kumar, M.; Monteith, J. Remote sensing of crop growth. In Plants and the Daylight Spectrum; Academic Press: Cambridge, MA, USA, 1981; pp. 133–144. [Google Scholar]
- Tao, F.; Yokozawa, M.; Zhang, Z.; Xu, Y.; Hayashi, Y. Remote sensing of crop production in China by production efficiency models: Models comparisons, estimates and uncertainties. Ecol. Model. 2005, 183, 385–396. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, J.; Zhu, Z.; Zhang, H.; Zhang, Z.; Guo, X.; Bi, Y.; Sun, L. Remotely sensed estimation of net primary productivity (NPP) and its spatial and temporal variations in the Greater Khingan Mountain region, China. Sustainability 2017, 9, 1213. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An improved CASA model for estimating winter wheat yield from remote sensing images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Chen, H.; Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 2009, 18, 280–290. [Google Scholar] [CrossRef]
- Los, S.O.; Justice, C.; Tucker, C. A global 1 by 1 NDVI data set for climate studies derived from the GIMMS continental NDVI data. Int. J. Remote Sens. 1994, 15, 3493–3518. [Google Scholar] [CrossRef]
- Veloso, G.A. Produtividade Primária Bruta e Biomassa em Pastagem no Bioma Cerrado: Uma Análise a Partir dos Modelos SEBAL/CASA e MOD17 no estado de Goiás. Ph.D. Thesis, Universidade Federal de Goiás, Goiás, Brasil, 2018. [Google Scholar]
- Wang, Y.; Yan, G.; Xie, D.; Hu, R.; Zhang, H. Generating long time series of high spatiotemporal resolution FPAR images in the remote sensing trend surface framework. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4401915. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, B.; Liu, L.; Fang, H.; Chen, D.; Hu, Y.; Liu, L. Characteristics and drivers of global NDVI-based FPAR from 1982 to 2006. Glob. Biogeochem. Cycles 2012, 26, GB3015. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Zhang, J.; Zhu, L. Variations in growing season NDVI and its sensitivity to climate change responses to green development in mountainous areas. Front. Environ. Sci. 2021, 9, 678450. [Google Scholar] [CrossRef]
- Jiang, S.; Huang, Y.; Zhao, L.; Cui, N.; Wang, Y.; Hu, X.; Zheng, S.; Zou, Q.; Feng, Y.; Guo, L. Effects of clouds and aerosols on ecosystem exchange, water and light use efficiency in a humid region orchard. Sci. Total Environ. 2022, 811, 152377. [Google Scholar] [CrossRef]
- Moussa, A. Classification of Climates according to Vegetation, Rainfall and Temperature (Togo). Master’s Thesis, University of Lomé, Lomé, Togo, 2008. [Google Scholar]
- Folega, F.; Woegan, Y.A.; Marra, D.; Wala, K.; Batawila, K.; Seburanga, J.L.; Zhang, C.y.; Peng, D.l.; Zhao, X.h.; Akpagana, K. Long term evaluation of green vegetation cover dynamic in the Atacora Mountain chain (Togo) and its relation to carbon sequestration in West Africa. J. Mt. Sci. 2015, 12, 921–934. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP using three models compared with MODIS-NPP data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Tan, J.; Jin, H.; Nan, X.; Zhang, Z.; Bian, J.; Lei, G. Assessments of gross primary productivity estimations with satellite data-driven models using eddy covariance observation sites over the northern hemisphere. Agric. For. Meteorol. 2020, 280, 107771. [Google Scholar] [CrossRef]
- De Leeuw, J.; Rizayeva, A.; Namazov, E.; Bayramov, E.; Marshall, M.T.; Etzold, J.; Neudert, R. Application of the MODIS MOD 17 Net Primary Production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 66–76. [Google Scholar] [CrossRef]
- Monette, M.; Hénault-Ethier, L.; Rony, F.J.; Beaudoin Nadeau, M.; Michel, G. Restauration des paysages forestiers et agroforestiers jumelée à la valorisation des déchets organiques en Haïti pour le développement durable d’une économie verte résiliente aux changements climatiques. Haiti Perspect. 2018, 6, 33–42. [Google Scholar]
- Gazull, L. Les filières agricoles et forestières du Sud à l’heure des bioénergies. In Développement Durable et Filières Tropicales; Biénabe, E., Lœillet, D., Rival, A., Eds.; Quae: Versailles, France, 2016; pp. 171–182. [Google Scholar]
- Diogo, R.V.; Adedigba, S.; Djedje, M.; Dossa, L.H. Gestion et contribution des résidus de récolte à la réduction du déficit alimentaire des élevages traditionnels de petits ruminants dans la zone soudanienne du Nord Bénin. Ann. UP Série Sci. Nat. Agron 2018, 8, 1–12. [Google Scholar]
- Inda, H.; García-Rodríguez, F.; del Puerto, L.; Stutz, S.; Figueira, R.C.L.; de Lima Ferreira, P.A.; Mazzeo, N. Discriminating between natural and human-induced shifts in a shallow coastal lagoon: A multidisciplinary approach. Anthropocene 2016, 16, 1–15. [Google Scholar] [CrossRef]
- Djan’na, K.H.; Atchonouglo, K.; Adounkpe, J.G.; Diwediga, B.; Lombo, Y.; Kpemoua, K.E.; Agboka, K. Changes In Land Use/Cover And Water Balance Components During 1964–2010 Period In The Mono River Basin, Togo-Benin. Geogr. Environ. Sustain. 2023, 15, 171–180. [Google Scholar] [CrossRef]
- Bengston, D.N.; Fan, D.P.; Celarier, D.N. A new approach to monitoring the social environment for natural resource management and policy: The case of US national forest benefits and values. J. Environ. Manag. 1999, 56, 181–193. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Meneses, B.M. Vegetation recovery patterns in burned areas assessed with landsat 8 OLI imagery and environmental biophysical data. Fire 2021, 4, 76. [Google Scholar] [CrossRef]
- Akodéwou, A.; Oszwald, J.; Akpavi, S.; Gazull, L.; Akpagana, K.; Gond, V. Problématique des plantes envahissantes au sud du Togo (Afrique de l’Ouest): Apport de l’analyse systémique paysagère et de la télédétection. Biotech. Agron. Soc. 2019, 23, 1–16. [Google Scholar]
- Tian, Z.; Qin, T.; Wang, H.; Li, Y.; Yan, S.; Hou, J.; Li, C.; Abebe, S. Delayed response of net primary productivity with climate change in the Yiluo River basin. Front. Earth Sci. 2023, 10, 1017819. [Google Scholar] [CrossRef]
- Ma, B.; Jing, J.; Liu, B.; Xu, Y.; Dou, S.; He, H. Spatiotemporal variation of net primary productivity influenced by climatic variables in the karst area of China. Geocarto Int. 2022, 37, 1–19. [Google Scholar] [CrossRef]
- Houot, S.; Pons, M.-N.; Pradel, M.; Tibi, A. Recyclage de Déchets Organiques en Agriculture: Effets Agronomiques et Environnementaux de Leur Épandage; Editions Quae: Montpellier, France, 2016. [Google Scholar]
- Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal variations of drought in the Yunnan-Guizhou Plateau, southwest China, during 1960–2013 and their association with large-scale circulations and historical records. Ecol. Indic. 2020, 112, 106041. [Google Scholar] [CrossRef]
- Hu, X.; Hou, Y.; Li, D.; Hua, T.; Marchi, M.; Urrego, J.; Huang, B.; Cherubini, F. Changes in multiple ecosystem services and their influencing factors in Nordic countries. Ecol. Indic. 2023, 146, 109847. [Google Scholar] [CrossRef]
- Mier y Terán Giménez Cacho, M.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 2018, 42, 637–665. [Google Scholar] [CrossRef]
- Rufino, M.C.; Dury, J.; Tittonell, P.; Van Wijk, M.T.; Herrero, M.; Zingore, S.; Mapfumo, P.; Giller, K.E. Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agric. Syst. 2011, 104, 175–190. [Google Scholar] [CrossRef]
- Renaud, S.; Colin, D. Les Rotaztions de Culture: Intérêt en Agriculture Biologique. Master’s Thesis, Université de Rennes, Rennes, France, 2017. [Google Scholar]
- Perrin, B.; Lefevre, A. L’association culturale, un levier pour améliorer santé des plantes, fertilité du sol et production des systèmes de culture maraichers diversifiés? Innov. Agron. 2019, 76, 51–70. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Li, Z.; Yang, G.; Song, X.; Yang, X.; Zhao, Y. Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images. Comput. Electron. Agric. 2022, 198, 107089. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelkarim, A. Monitoring and forecasting of land use/land cover (LULC) in Al-Hassa Oasis, Saudi Arabia based on the integration of the Cellular Automata (CA) and the Cellular Automata-Markov Model (CA-Markov). Geol. Ecol. Landsc. 2023. [CrossRef]
Sentinel-2B | Center Wavelength (nm) | Spatial Resolution (m) |
---|---|---|
Band 1—Coastal aerosol | 442.2 | 60 |
Band 2—Blue | 492.1 | 10 |
Band 3—Green | 559.0 | 10 |
Band 4—Red | 664.9 | 10 |
Band 5—Vegetation red edge | 703.8 | 20 |
Band 6—Vegetation red edge | 739.1 | 20 |
Band 7—Vegetation red edge | 779.7 | 20 |
Band 8—NIR | 832.9 | 10 |
Band 8A—Narrow NIR | 864.0 | 20 |
Band 9—Water vapor | 943.2 | 60 |
Band 10—SWIR—Cirrus | 1376.9 | 60 |
Band 11—SWIR | 1610.4 | 20 |
Band 12—SWIR | 2185.7 | 20 |
Severity Level | dNBR Range (Scaled by 103) | dNBR Range (Not Scaled) | |
---|---|---|---|
Enhanced regrowth, high (post-fire) | −500 to −251 | −0.500 to −0.251 | |
Enhanced regrowth, low (post-fire) | −250 to −101 | −0.250 to −0.101 | |
Unburned | −100 to +99 | −0.100 to +0.99 | |
Low severity | +100 to +269 | +0.100 to +0.269 | |
Moderate–low severity | +270 to +439 | +0.270 to +0.439 | |
Moderate–high severity | +440 to +659 | +0.440 to +0.659 | |
High severity | +660 to +1300 | +0.660 to +1.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folega, F.; Atakpama, W.; Pereki, H.; Diwediga, B.; Novotny, I.P.; Dray, A.; Garcia, C.; Wala, K.; Batawila, K.; Akpagana, K. Geo-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo. Appl. Sci. 2023, 13, 9106. https://doi.org/10.3390/app13169106
Folega F, Atakpama W, Pereki H, Diwediga B, Novotny IP, Dray A, Garcia C, Wala K, Batawila K, Akpagana K. Geo-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo. Applied Sciences. 2023; 13(16):9106. https://doi.org/10.3390/app13169106
Chicago/Turabian StyleFolega, Fousseni, Wouyo Atakpama, Hodabalo Pereki, Badabaté Diwediga, Ivan Pontin Novotny, Anne Dray, Claude Garcia, Kperkouma Wala, Komlan Batawila, and Kofi Akpagana. 2023. "Geo-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo" Applied Sciences 13, no. 16: 9106. https://doi.org/10.3390/app13169106
APA StyleFolega, F., Atakpama, W., Pereki, H., Diwediga, B., Novotny, I. P., Dray, A., Garcia, C., Wala, K., Batawila, K., & Akpagana, K. (2023). Geo-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo. Applied Sciences, 13(16), 9106. https://doi.org/10.3390/app13169106