Efficacy and Duration of Intra-Articular Autologous Micro-Fragmented Adipose Tissue in Athletes with Ankle Osteoarthritis: A 36-Month Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Partecipants
2.3. Analysed Variables
2.4. Instruments Used for the Study and Procedure Followed
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Functional Outcomes, Patient Satisfaction and Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Rheum. Dis. Clin. N. Am. 2008, 34, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Cushnaghan, J.; Dieppe, P. Study of 500 Patients with Limb Joint Osteoarthritis. I. Analysis by Age, Sex, and Distribution of Symptomatic Joint Sites. Ann. Rheum. Dis. 1991, 50, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Barg, A.; Pagenstert, G.I.; Hügle, T.; Gloyer, M.; Wiewiorski, M.; Henninger, H.B.; Valderrabano, V. Ankle Osteoarthritis: Etiology, Diagnostics, and Classification. Foot Ankle Clin. 2013, 18, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D.; Johnston, R.C.; Saltzman, C.L.; Marsh, J.L.; Buckwalter, J.A. Posttraumatic Osteoarthritis: A First Estimate of Incidence, Prevalence, and Burden of Disease. J. Orthop. Trauma 2006, 20, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Daniels, T.; Thomas, R. Etiology and Biomechanics of Ankle Arthritis. Foot Ankle Clin. 2008, 13, 341–352. [Google Scholar] [CrossRef]
- Valderrabano, V.; Horisberger, M.; Russell, I.; Dougall, H.; Hintermann, B. Etiology of Ankle Osteoarthritis. Clin. Orthop. Relat. Res. 2009, 467, 1800–1806. [Google Scholar] [CrossRef] [Green Version]
- Valderrabano, V.; Hintermann, B.; Horisberger, M.; Tak, S.F. Ligamentous Posttraumatic Ankle Osteoarthritis. Am. J. Sports Med. 2006, 34, 612–620. [Google Scholar] [CrossRef]
- Agel, J.; Coetzee, J.C.; Sangeorzan, B.J.; Roberts, M.M.; Hansen, S.T. Functional Limitations of Patients with End-Stage Ankle Arthrosis. Foot Ankle Int. 2005, 26, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Witteveen, A.G.H.; Hofstad, C.J.; Kerkhoffs, G.M.M.J. Hyaluronic Acid and Other Conservative Treatment Options for Osteoarthritis of the Ankle. Cochrane Database Syst. Rev. 2015, 10. [Google Scholar] [CrossRef]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI Guidelines for the Non-Surgical Management of Knee, Hip, and Polyarticular Osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Garcia, A.; Rodriguez-Merchan, E.C. Orthobiologics: Current Role in Orthopedic Surgery and Traumatology. Arch. Bone Jt. Surg. 2022, 10, 536–542. [Google Scholar] [PubMed]
- Calcei, J.G.; Rodeo, S.A. Orthobiologics for Bone Healing. Clin. Sports Med. 2019, 38, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Alexander, A.; Khan, J.; Giri, T.; Siddique, S.; Dubey, S.; Ajazuddin; Patel, R.; Gupta, U.; Saraf, S.; et al. Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview. Curr. Stem Cell Res. Ther. 2019, 14, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of Mesenchymal Stem/Stromal Cell Function. Stem Cell Res. Ther. 2016, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Condello, V.; Madonna, V.; Guerriero, M.; Zorzi, C. Autologous and Micro-Fragmented Adipose Tissue for the Treatment of Diffuse Degenerative Knee Osteoarthritis. J. Exp. Orthop. 2017, 4, 33. [Google Scholar] [CrossRef]
- Natali, S.; Screpis, D.; Farinelli, L.; Iacono, V.; Vacca, V.; Gigante, A.; Zorzi, C. The Use of Intra-Articular Injection of Autologous Micro-Fragmented Adipose Tissue as Pain Treatment for Ankle Osteoarthritis: A Prospective Not Randomized Clinical Study. Int. Orthop. 2021, 45, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Gang, X.; Sun, C.; Wang, G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J. Diabetes Res. 2017, 2017, 9328347. [Google Scholar] [CrossRef] [Green Version]
- Marfia, G.; Navone, S.E.; Di Vito, C.; Ughi, N.; Tabano, S.; Miozzo, M.; Tremolada, C.; Bolla, G.; Crotti, C.; Ingegnoli, F.; et al. Mesenchymal Stem Cells: Potential for Therapy and Treatment of Chronic Non-Healing Skin Wounds. Organogenesis 2015, 11, 183–206. [Google Scholar] [CrossRef]
- Bianchi, F.; Maioli, M.; Leonardi, E.; Olivi, E.; Pasquinelli, G.; Valente, S.; Mendez, A.J.; Ricordi, C.; Raffaini, M.; Tremolada, C.; et al. A New Nonenzymatic Method and Device to Obtain a Fat Tissue Derivative Highly Enriched in Pericyte-like Elements by Mild Mechanical Forces from Human Lipoaspirates. Cell Transpl. 2013, 22, 2063–2077. [Google Scholar] [CrossRef]
- Ceserani, V.; Ferri, A.; Berenzi, A.; Benetti, A.; Ciusani, E.; Pascucci, L.; Bazzucchi, C.; Coccè, V.; Bonomi, A.; Pessina, A.; et al. Angiogenic and Anti-Inflammatory Properties of Micro-Fragmented Fat Tissue and Its Derived Mesenchymal Stromal Cells. Vasc. Cell 2016, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, F.; Olivi, E.; Baldassarre, M.; Giannone, F.; Laggetta, M.; Valente, S.; Cavallini, C.; Tassinari, R.; Canaider, S.; Pasquinelli, G.; et al. Lipogems, a New Modality of Fat Tissue Handling to Enhance Tissue Repair in Chronic Hind Limb Ischemia. CellR4 2014, 2, e1289. [Google Scholar]
- Cattaneo, G.; De Caro, A.; Napoli, F.; Chiapale, D.; Trada, P.; Camera, A. Micro-Fragmented Adipose Tissue Injection Associated with Arthroscopic Procedures in Patients with Symptomatic Knee Osteoarthritis. BMC Musculoskelet. Disord. 2018, 19, 176. [Google Scholar] [CrossRef] [PubMed]
- Hurley, E.T.; Yasui, Y.; Gianakos, A.L.; Seow, D.; Shimozono, Y.; Kerkhoffs, G.M.M.J.; Kennedy, J.G. Limited Evidence for Adipose-Derived Stem Cell Therapy on the Treatment of Osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3499–3507. [Google Scholar] [CrossRef]
- Montero, I.; León, O.G. A Guide for Naming Research Studies in Psychology. Int. J. Clin. Health Psychol. 2007, 7, 847–862. [Google Scholar]
- Kitaoka, H.B.; Alexander, I.J.; Adelaar, R.S.; Nunley, J.A.; Myerson, M.S.; Sanders, M. Clinical Rating Systems for the Ankle-Hindfoot, Midfoot, Hallux, and Lesser Toes. Foot Ankle Int. 1994, 15, 349–353. [Google Scholar] [CrossRef]
- Martin, R.; Burdett, R.; Irrgang, J. Development of the Foot and Ankle Disability Index (FADI) [Abstract]. J. Orthop. Sports Phys. Ther. 1999, 29, A32–A33. [Google Scholar]
- Langley, G.B.; Sheppeard, H. The Visual Analogue Scale: Its Use in Pain Measurement. Rheumatol. Int. 1985, 5, 145–148. [Google Scholar] [CrossRef]
- Niazi, N.; Islam, A.; Aljawadi, A.; Akbar, Z.; Pillai, A. Autologous Micro Fragmented Adipose Cell Therapy for End-Stage Ankle Osteoarthritis—Case Report and Review of Literature. SN Compr. Clin. Med. 2021, 3, 909–913. [Google Scholar] [CrossRef]
- Shimozono, Y.; Dankert, J.F.; Kennedy, J.G. Arthroscopic Debridement and Autologous Micronized Adipose Tissue Injection in the Treatment of Advanced-Stage Posttraumatic Osteoarthritis of the Ankle. Cartilage 2021, 13, 1337S–1343S. [Google Scholar] [CrossRef]
- Usuelli, F.G.; D’Ambrosi, R.; Maccario, C.; Indino, C.; Manzi, L.; Maffulli, N. Adipose-Derived Stem Cells in Orthopaedic Pathologies. Br. Med. Bull. 2017, 124, 31–54. [Google Scholar] [CrossRef]
- McIntyre, J.A.; Jones, I.A.; Han, B.; Vangsness, C.T. Intra-Articular Mesenchymal Stem Cell Therapy for the Human Joint: A Systematic Review. Am. J. Sports Med. 2018, 46, 3550–3563. [Google Scholar] [CrossRef]
- Vezzani, B.; Shaw, I.; Lesme, H.; Yong, L.; Khan, N.; Tremolada, C.; Péault, B. Higher Pericyte Content and Secretory Activity of Microfragmented Human Adipose Tissue Compared to Enzymatically Derived Stromal Vascular Fraction. Stem Cells Transl. Med. 2018, 7, 876–886. [Google Scholar] [CrossRef] [Green Version]
- Nava, S.; Sordi, V.; Pascucci, L.; Tremolada, C.; Ciusani, E.; Zeira, O.; Cadei, M.; Soldati, G.; Pessina, A.; Parati, E.; et al. Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells Int. 2019, 2019, 5901479. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, M.; Borrone, A.; Follenzi, A.; Messaggio, F.; Tremolada, C.; Cannas, M. Human Lipoaspirate as Autologous Injectable Active Scaffold for One-Step Repair of Cartilage Defects. Cell Transpl. 2016, 25, 1043–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Yu, X.; Yang, Q.; Liu, X.; Fang, J.; Dai, X. Autologous Micro-Fragmented Adipose Tissue as Stem Cell-Based Natural Scaffold for Cartilage Defect Repair. Cell Transpl. 2019, 28, 1709–1720. [Google Scholar] [CrossRef] [PubMed]
- Filardo, G.; Tschon, M.; Perdisa, F.; Brogini, S.; Cavallo, C.; Desando, G.; Giavaresi, G.; Grigolo, B.; Martini, L.; Nicoli Aldini, N.; et al. Micro-Fragmentation Is a Valid Alternative to Cell Expansion and Enzymatic Digestion of Adipose Tissue for the Treatment of Knee Osteoarthritis: A Comparative Preclinical Study. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 773–781. [Google Scholar] [CrossRef]
- Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2007, 25, 2739–2749. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.F.; Chou, Y.J.; Hsu, C.W.; Hwang, C.W.; Hsu, P.T.; Wang, J.L.; Hsu, Y.W.; Chou, M.C. Efficacy of Intra-Articular Hyaluronic Acid in Patients with Osteoarthritis of the Ankle: A Prospective Study. Osteoarthr. Cartil. 2006, 14, 867–874. [Google Scholar] [CrossRef] [Green Version]
Variable | Patients |
---|---|
Number | 21.0 |
Age, mean (SD) [range] | 23.9 (4.5) [18.0–30.0] |
Gender | |
Male (%) | 16.0 (76.2) |
Female (%) | 5.0 (23.8) |
Side | |
Right (%) | 10.0 (47.6) |
Left (%) | 11.0 (52.4) |
BMI (kg/m2), mean (SD) [range] | 26.0 (4.7) [20.5–37.9] |
Physical demands of the job | |
Light work (%) | 13 (61.9) |
Heavy work (%) | 8.0 (38.1) |
Tobacco use (%) | 12.0 (57.1) |
Etiology of OA | |
Idiopathic (%) | 4.0 (19.1) |
Traumatic (%) | 17.0 (80.9) |
Sports | |
Tennis (%) | 3.0 (14.3) |
Soccer (%) | 7.0 (33.3) |
Basketball (%) | 2.0 (9.5) |
Volleyball (%) | 2.0 (9.5) |
Jogging (%) | 2.0 (9.5) |
Other sports (%) | 5.0 (23.8) |
ASA class | |
1 (%) | 14.0 (66.7) |
2 (%) | 7.0 (33.3) |
Radiographic stage (Kellgren–Lawrence) | |
Grade I | 11.0 (52.4) |
Grade II | 10.0 (47.6) |
Variable | Values | p-Value | |
---|---|---|---|
VAS | |||
Baseline, mean (SD) [range] | 6.9 (1.0) [5.0–9.0] | Baseline vs. 6 months | <0.005 |
6 months, mean (SD) [range] | 3.7 (1.1) [2.0–5.0] | Baseline vs. 12 months | <0.005 |
12 months, mean (SD) [range] | 3.6 (0.9) [2.0–5.0] | Baseline vs. 24 months | <0.005 |
24 months, mean (SD) [range] | 3.1 (0.6) [2.0–4.0] | Baseline vs. 36 months | <0.005 |
36 months, mean (SD) [range] | 4.2 (1.2) [2.0–6.0] | 6 months vs. 12 months | 0.760 |
12 months vs. 24 months | 0.090 | ||
24 months vs. 36 months | <0.005 | ||
AOFAS | |||
Baseline, mean (SD) [range] | 53.1 (7.4) [42.0–65.0] | Baseline vs. 6 months | 0.013 |
6 months, mean (SD) [range] | 59.1 (7.5) [48.0–71.0] | Baseline vs. 12 months | <0.005 |
12 months, mean (SD) [range] | 62.1 (7.6) [52.0–75.0] | Baseline vs. 24 months | <0.005 |
24 months, mean (SD) [range] | 71.1 (7.5) [62.0–83.0] | Baseline vs. 36 months | <0.005 |
36 months, mean (SD) [range] | 66.1 (7.6) [56.0–78.0] | 6 months vs. 12 months | 0.210 |
12 months vs. 24 months | <0.005 | ||
24 months vs. 36 months | 0.040 | ||
FADI | |||
Baseline, mean (SD) [range] | 56.7 (17.0) [30.0–90.0] | Baseline vs. 6 months | <0.005 |
6 months, mean (SD) [range] | 70.7 (10.4) [45.0–90.0] | Baseline vs. 12 months | <0.005 |
12 months, mean (SD) [range] | 73.0 (10.7) [47.0–93.0] | Baseline vs. 24 months | <0.005 |
24 months, mean (SD) [range] | 82.3 (10.3) [55.0–95.0] | Baseline vs. 36 months | <0.005 |
36 months, mean (SD) [range] | 75.3 (8.6) [58.0–90.0] | 6 months vs. 12 months | 0.490 |
12 months vs. 24 months | 0.006 | ||
24 months vs. 36 months | 0.020 | ||
Satisfaction questionnaire, 36 months: | |||
Very satisfied (%) | 17.0 (81.0) | ||
Satisfied (%) | 4.0 (19.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacono, V.; Natali, S.; De Berardinis, L.; Screpis, D.; Gigante, A.P.; Zorzi, C. Efficacy and Duration of Intra-Articular Autologous Micro-Fragmented Adipose Tissue in Athletes with Ankle Osteoarthritis: A 36-Month Follow-Up Study. Appl. Sci. 2023, 13, 8983. https://doi.org/10.3390/app13158983
Iacono V, Natali S, De Berardinis L, Screpis D, Gigante AP, Zorzi C. Efficacy and Duration of Intra-Articular Autologous Micro-Fragmented Adipose Tissue in Athletes with Ankle Osteoarthritis: A 36-Month Follow-Up Study. Applied Sciences. 2023; 13(15):8983. https://doi.org/10.3390/app13158983
Chicago/Turabian StyleIacono, Venanzio, Simone Natali, Luca De Berardinis, Daniele Screpis, Antonio Pompilio Gigante, and Claudio Zorzi. 2023. "Efficacy and Duration of Intra-Articular Autologous Micro-Fragmented Adipose Tissue in Athletes with Ankle Osteoarthritis: A 36-Month Follow-Up Study" Applied Sciences 13, no. 15: 8983. https://doi.org/10.3390/app13158983
APA StyleIacono, V., Natali, S., De Berardinis, L., Screpis, D., Gigante, A. P., & Zorzi, C. (2023). Efficacy and Duration of Intra-Articular Autologous Micro-Fragmented Adipose Tissue in Athletes with Ankle Osteoarthritis: A 36-Month Follow-Up Study. Applied Sciences, 13(15), 8983. https://doi.org/10.3390/app13158983