Shearing Characteristics of Mortar–Rock Binary Medium Interfaces with Different Roughness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Through the indoor direct shear test, the shear stress–displacement relationship and the failure mode of the mortar–rock interface are obtained. A series of direct shear numerical simulation tests will be carried out based on the numerical model of the mortar–rock interface.
- There are three shear failure modes of the mortar–rock interface, which are interface separation failure, separation shear failure, and serrated shear failure. For the interface with low roughness, under the state of low normal stress, the interface is generally separated and destroyed, while for the interface with low roughness, under the environment of high normal stress and high roughness interface under the shear stress of the first normal stress, the interface is generally separated and broken. For the interface with high roughness, under high normal stress, most of them are jagged shear failures. The shear displacement corresponds to the peak stress and can be used to judge the failure mode of the interface.
- From the change in the shear stress–displacement curve shape, it is found that the larger the interface roughness and the normal stress are, the larger the shear stiffness of the binary medium is, and then the linear correlation between the interface shear stiffness of the binary medium and the two is established.
- Based on the Mohr–Coulomb criterion and the shear strength of the interface, the quantitative correlation between the interfacial adhesion, the internal friction angle, the residual internal friction angle, the sawtooth angle, and the normal stress of the MRBM is obtained. The correlation between the shear strength degradation rate of the MRBM and the normal stress and sawtooth angle is analyzed.
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zeng, X.; Lin, Z.; Su, J.; Gao, T.; Deng, R.; Liu, X. Experimental study on phosphate rock modified soil-bentonite as a cut-off wall material. Water Supply 2022, 22, 1676–1690. [Google Scholar]
- Liu, Y.; He, B.; Xie, J.; Lu, Y.; Zhang, L. Compatibility of geosynthetic clay liners at different temperatures. J. Environ. Prot. Ecol. 2021, 22, 2295–2306. [Google Scholar]
- Zou, S.; Li, H.; Liu, L.; Wang, S.; Zhang, X.; Zhang, G. Research on improving comprehensive properties of a new sawdust composite insulation material by torrefaction. Process Saf. Environ. Prot. 2021, 152, 361–374. [Google Scholar]
- Fan, H.; Lu, Y.; Hu, Y.; Fang, J.; Lv, C.; Xu, C.; Feng, X.; Liu, Y. A landslide susceptibility evaluation of highway disasters based on the frequency ratio coupling model. Sustainability 2022, 14, 7740. [Google Scholar]
- Han, Y.-S.; Dong, S.-K.; Chen, Z.-C.; Hu, K.-H.; Su, F.-H.; Huang, P. Assessment of secondary mountain hazards along a section of the Dujiangyan-Wenchuan highway. J. Mt. Sci. 2014, 11, 51–65. [Google Scholar]
- Zhu, W.; Gu, S.-q. Casing mechanism of engineering hazards in a oil field in central China. Environ. Earth Sci. 2013, 70, 869–875. [Google Scholar]
- Li, M.; Lv, H.; Lu, Y.; Wang, D.; Shi, S.; Li, R. Instantaneous discharge characteristics and its methane ignition mechanism of coal mine rock damage. Environ. Sci. Pollut. Res. 2022, 29, 62495–62506. [Google Scholar]
- Tian, Z.; Zhang, Z.; Deng, M.; Yan, S.; Bai, J. Gob-side entry retained with soft roof, floor, and seam in thin coal seams: A case study. Sustainability 2020, 12, 1197. [Google Scholar]
- Zhang, J.; Yang, F.; Zhang, R.; He, J.; Xie, Y.; Miao, Z.; Zhang, J. Experimental Research on Coal Seam Structure and Gas Occurrence Influencing Factors in Weijiadi Mine China. Fresenius Environ. Bull. 2022, 31, 74–80. [Google Scholar]
- Zhao, Y.; Luo, S.; Wang, Y.; Wang, W.; Zhang, L.; Wan, W. Numerical analysis of karst water inrush and a criterion for establishing the width of water-resistant rock pillars. Mine Water Environ. 2017, 36, 508–519. [Google Scholar]
- Brown, E.T. The mechanics of discontinua: Engineering in discontinuous rock masses. Aust. Geomech. J. 2004, 39, 51–72. [Google Scholar]
- Jaeger, J. Shear failure of anistropic rocks. Geol. Mag. 1960, 97, 65–72. [Google Scholar]
- Wang, F.; Zhang, C.; Wei, S.; Zhang, X.; Guo, S. Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock. Tunn. Undergr. Space Technol. 2016, 51, 133–143. [Google Scholar] [CrossRef]
- Fan, X.; Kulatilake, P.H.S.W.; Chen, X. Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: A particle mechanics approach. Eng. Geol. 2015, 190, 17–32. [Google Scholar]
- Gui, Y.; Xia, C.; Ding, W.; Qian, X.; Du, S. A New Method for 3D Modeling of Joint Surface Degradation and Void Space Evolution Under Normal and Shear Loads. Rock Mech. Rock Eng. 2017, 50, 2827–2836. [Google Scholar]
- Lin, H.; Zhang, X.; Cao, R.; Wen, Z. Improved nonlinear Burgers shear creep model based on the time-dependent shear strength for rock. Environ. Earth Sci. 2020, 79, 149. [Google Scholar]
- Xie, S.; Lin, H.; Duan, H. A novel criterion for yield shear displacement of rock discontinuities based on renormalization group theory. Eng. Geol. 2023, 314, 107008. [Google Scholar]
- Xie, S.; Lin, H.; Duan, H.; Chen, Y. Modeling description of interface shear deformation: A theoretical study on damage statistical distributions. Constr. Build. Mater. 2023, 394, 132052. [Google Scholar]
- Zhao, Y.; Zhang, L.; Asce, F.; Liao, J.; Tang, L. Experimental Study of Fracture Toughness and Subcritical Crack Growth of Three Rocks under Different Environments. Int. J. Geomech. 2020, 20, 4020128. [Google Scholar]
- Han, L.; Lin, H.; Chen, Y.; Lei, D. Effects of strength property difference on shear strength of joint of binary media. Environ. Earth Sci. 2021, 80, 712. [Google Scholar]
- Shen, Y.; Wang, Y.; Yang, Y.; Sun, Q.; Luo, T.; Zhang, H. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Constr. Build. Mater. 2019, 213, 156–166. [Google Scholar]
- Dai, S.; Gong, Y.; Wang, F.; Hu, P. Experimental study on influential factors of shale permeability based on the gas pulse decay method. Fresenius Environ. Bull. 2019, 28, 6307–6313. [Google Scholar]
- Liu, S.; Nie, Y.; Hu, W.; Ashiru, M.; Li, Z.; Zuo, J. The Influence of Mixing Degree between Coarse and Fine Particles on the Strength of Offshore and Coast Foundations. Sustainability 2022, 14, 9177. [Google Scholar]
- Pan, Y.-H.; Qi, J.-R.; Zhang, J.-F.; Peng, Y.-X.; Chen, C.; Ma, H.-N.; Ye, C. A Comparative Study on Steady-State Water Inflow into a Circular Underwater Tunnel with an Excavation Damage Zone. Water 2022, 14, 3154. [Google Scholar]
- Sun, C.; Sun, M.; Tao, T.; Qu, F.; Wang, G.; Zhang, P.; Li, Y.; Duan, J. Chloride binding capacity and its effect on the microstructure of mortar made with marine sand. Sustainability 2021, 13, 4169. [Google Scholar]
- Sun, C.; Sun, M.; Tao, T.; Qu, F.; Wang, G.; Zhang, P.; Li, Y.; Duan, J. Chloride-binding capacity of mortars composed of marine sand subjected to external chloride penetration. J. Oceanol. Limnol. 2022, 40, 1462–1471. [Google Scholar]
- Wu, H.; Jia, Q.; Wang, W.; Zhang, N.; Zhao, Y. Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal Mine. Sustainability 2021, 13, 13280. [Google Scholar]
- Yu, W.; Li, K.; Liu, Z.; An, B.; Wang, P.; Wu, H. Mechanical characteristics and deformation control of surrounding rock in weakly cemented siltstone. Environ. Earth Sci. 2021, 80, 337. [Google Scholar]
- Yuan, Z.; Zhao, J.; Li, S.; Jiang, Z.; Huang, F. A unified solution for surrounding rock of roadway considering seepage, dilatancy, strain-softening and intermediate principal stress. Sustainability 2022, 14, 8099. [Google Scholar]
- Zhang, R.; Tang, P.; Lan, T.; Liu, Z.; Ling, S. Resilient and Sustainability Analysis of Flexible Supporting Structure of Expansive Soil Slope. Sustainability 2022, 14, 12813. [Google Scholar]
- Zhao, Y.; Tang, J.; Chen, Y.; Zhang, L.; Wang, W.; Wan, W.; Liao, J. Hydromechanical coupling tests for mechanical and permeability characteristics of fractured limestone in complete stress–strain process. Environ. Earth Sci. 2017, 76, 24. [Google Scholar]
- Tang, W.; Lin, H.; Chen, Y.; Feng, J.; Hu, H. Mechanical characteristics and acoustic emission characteristics of mortar-rock binary medium. Buildings 2022, 12, 665. [Google Scholar]
- Tang, W.; Lin, H. Influence of dentate discontinuity height on shear properties of soft structure plane. J. Cent. South Univ. 2017, 48, 1300–1307. [Google Scholar]
- Tang, W.; Lin, H. Influence of Internal Friction Angle and Interface Roughness on Shear Behavior of Mortar-Rock Binary Medium Joint. Geotech. Geol. Eng. 2021, 39, 3917–3929. [Google Scholar]
- Shang, J.; Yokota, Y.; Zhao, Z.; Dang, W. DEM simulation of mortar-bolt interface behaviour subjected to shearing. Constr. Build. Mater. 2018, 185, 120–137. [Google Scholar]
- Sun, B.-J.; Liu, Q.-W.; Li, W.-T.; Yang, X.-Z.; Yang, B.; Li, T.-C. Numerical implementation of rock bolts with yield and fracture behaviour under tensile-shear load. Eng. Fail. Anal. 2022, 139, 106462. [Google Scholar]
- Yokota, Y.; Zhao, Z.; Nie, W.; Date, K.; Iwano, K.; Okada, Y. Experimental and Numerical Study on the Interface Behaviour Between the Rock Bolt and Bond Material. Rock Mech. Rock Eng. 2018, 52, 869–879. [Google Scholar]
- Cao, R.; Tang, W.; Lin, H.; Fan, X. Numerical Analysis for the Progressive Failure of Binary-Medium Interface under Shearing. Adv. Civ. Eng. 2018, 2018, 4197172. [Google Scholar]
- Mortara, G. A simple model for sand-structure interface behaviour. Geotech. Eng. 2020, 174, 33–43. [Google Scholar]
- Saberi, M.; Annan, C.D.; Konrad, J.M. Three-dimensional constitutive model for cyclic behavior of soil-structure interfaces. Soil Dyn. Earthq. Eng. 2020, 134, 106162. [Google Scholar]
- Zhou, J.; Zhou, C.; Feng, Q.; Gao, T. Analytical Model for Load-Transfer Mechanism of Rock-Socketed Drilled Piles: Considering Bond Strength of the Concrete–Rock Interface. Int. J. Geomech. 2020, 20, 04020059. [Google Scholar]
- Yu, B. Mechanical properties and binary-medium constitutive model for semi-through jointed mudstone samples. Int. J. Rock Mech. Min. Sci. 2020, 132, 104376. [Google Scholar] [CrossRef]
- Yan, Z.; Long, Z.; Qu, W. The effect of shear on the anchorage interface of rock slope with weak layers under earthquake. Rock Soil Mech 2019, 40, 2882–2890. [Google Scholar]
- Dong, W.; Yuan, W.; Zhang, B.; Zhong, H. Energy-Based Fracture Criterion of Rock–Concrete Interface Considering Viscoelastic Characteristics. J. Eng. Mech. 2022, 148, 04021155. [Google Scholar] [CrossRef]
Plastic Strain | 0 | 0.005 | 0.01 | 1 |
---|---|---|---|---|
C/MPa | 3.12 | 0.64 | 0.48 | 0 |
/° | 40 | 32 | 26 | 12 |
Plastic Strain | 0 | 0.005 | 0.01 | 1 |
---|---|---|---|---|
C/MPa | 9 | 7.2 | 2.7 | 1.8 |
/° | 61 | 48.8 | 39.7 | 18.3 |
Material | E/GPa | μ | C/MPa | /° | /° | /MPa | /kN·m−3 |
---|---|---|---|---|---|---|---|
mortar | 1.67 | 0.3 | 3.12 | 40 | 15 | 1.76 | 19 |
rock | 16 | 0.21 | 9 | 61 | 28 | 6.2 | 27 |
Normal Stress/MPa | Sawtooth Angle 8° | Sawtooth Angle 16° | Sawtooth Angle 23° | Sawtooth Angle 30° | Sawtooth Angle 36° | Sawtooth Angle 45° |
---|---|---|---|---|---|---|
0.1 | 7.10 | 10.82 | 13.41 | 16.93 | 19.00 | 23.47 |
0.5 | 7.10 | 11.27 | 13.64 | 17.60 | 19.60 | 23.93 |
1.0 | 7.06 | 11.82 | 13.93 | 17.87 | 20.13 | 24.47 |
1.5 | 7.21 | 12.32 | 14.67 | 18.40 | 20.67 | 25.00 |
2.0 | 7.67 | 12.61 | 15.00 | 18.87 | 21.20 | 25.40 |
2.5 | 7.79 | 13.01 | 15.80 | 19.2 | 21.47 | 25.87 |
3.0 | 7.99 | 13.31 | 16.47 | 19.87 | 22.00 | 26.20 |
3.5 | 8.12 | 13.57 | 17.00 | 20.27 | 22.40 | 26.87 |
4.0 | 8.20 | 13.65 | 17.13 | 20.60 | 22.80 | 27.20 |
4.5 | 8.33 | 13.73 | 17.07 | 20.60 | 23.40 | 27.33 |
5.0 | 8.60 | 13.67 | 16.73 | 20.27 | 23.33 | 27.60 |
Normal Stress /MPa | Sawtooth Angle 8° | Sawtooth Angle 16° | Sawtooth Angle 23° | Sawtooth Angle 30° | Sawtooth Angle 36° | Sawtooth Angle 45° |
---|---|---|---|---|---|---|
0.1 | 0.20 | 0.27 | 0.37 | 0.85 | 0.95 | 0.92 |
0.5 | 0.20 | 0.81 | 0.80 | 0.84 | 1.04 | 0.91 |
1.0 | 0.20 | 0.85 | 0.82 | 0.86 | 0.95 | 0.93 |
1.5 | 0.64 | 0.89 | 0.85 | 0.93 | 1.04 | 0.94 |
2.0 | 0.9 | 0.87 | 0.88 | 0.94 | 1.07 | 0.95 |
2.5 | 0.91 | 0.9 | 0.95 | 0.97 | 1.09 | 2.11 |
3.0 | 1.02 | 0.94 | 0.95 | 0.97 | 1.09 | 2.17 |
3.5 | 0.98 | 0.96 | 0.95 | 1.01 | 1.11 | 2.22 |
4.0 | 1.35 | 0.97 | 1.01 | 1.11 | 2.05 | 2.42 |
4.5 | 1.38 | 0.97 | 1.04 | 1.50 | 2.20 | 2.45 |
5.0 | 1.41 | 1.46 | 1.05 | 1.55 | 2.30 | 2.31 |
Sawtooth Angle (°) | Cohesion (MPa) | Internal Frictional Angle (°) | Correlation Coefficient R2 |
---|---|---|---|
8 | 1.602 | 24.480 | 0.9894 |
16 | 1.981 | 28.484 | 0.994 |
23 | 2.413 | 35.417 | 0.9998 |
30 | 3.262 | 36.664 | 0.9979 |
36 | 4.679 | 37.474 | 0.9987 |
45 | 5.915 | 39.147 | 0.9986 |
Sawtooth Angle (°) | Residual Cohesion (MPa) | Residual Angle of Internal Friction (°) | Correlation Coefficient R2 |
---|---|---|---|
8 | 1.602 | 24.48 | 0.9894 |
16 | 1.981 | 28.48 | 0.994 |
23 | 2.413 | 35.42 | 0.9998 |
30 | 3.262 | 36.66 | 0.9979 |
36 | 4.679 | 37.47 | 0.9987 |
45 | 5.915 | 39.15 | 0.9986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, M.; Tang, W.; Chen, Y. Shearing Characteristics of Mortar–Rock Binary Medium Interfaces with Different Roughness. Appl. Sci. 2023, 13, 8930. https://doi.org/10.3390/app13158930
Zhao Y, Zhang M, Tang W, Chen Y. Shearing Characteristics of Mortar–Rock Binary Medium Interfaces with Different Roughness. Applied Sciences. 2023; 13(15):8930. https://doi.org/10.3390/app13158930
Chicago/Turabian StyleZhao, Yanlin, Minzhen Zhang, Wenyu Tang, and Yifan Chen. 2023. "Shearing Characteristics of Mortar–Rock Binary Medium Interfaces with Different Roughness" Applied Sciences 13, no. 15: 8930. https://doi.org/10.3390/app13158930
APA StyleZhao, Y., Zhang, M., Tang, W., & Chen, Y. (2023). Shearing Characteristics of Mortar–Rock Binary Medium Interfaces with Different Roughness. Applied Sciences, 13(15), 8930. https://doi.org/10.3390/app13158930