Maximizing the Capacity of Edge Networks with Multicasting
Abstract
:1. Introduction
- We investigated multicast communication in edge caching networks. SBS caching of the content was selected to construct the multicast tree and the content copy was held in the branch node;
- We used the term capacity as the evaluation metric and analyzed the upper and lower bounds of system capacity. The upper bound is determined by considering the full k-ary tree and the lower bound by the assumption that multicast communication happens only at the last hop.
2. Related Work
2.1. Influence of Routing Scheme on the Capacity
2.2. Influence of Caching Scheme on the Capacity
2.3. Multicasting in Edge Networks
2.4. Gap in the Existing Literature
3. System Architecture
3.1. Network Model
3.2. Multicast Tree
4. Generalized Representation of Network Capacity
5. Multicast Transmission Distance
5.1. Upper Bound on the Transmission Distance
5.2. Lower Bound on the Transmission Distance
6. Optimal Number of Copies
6.1. Optimal Number of Copies in the Last Hop Multicast
6.2. Optimal Number of Copies in the Complete K-Ary Multicast
7. Multicast Network Capacity
7.1. Content Caching Algorithm
Algorithm 1 The proportional regional caching algorithm |
|
7.2. Capacity
7.3. Scalability Analysis
8. Simulation Results and Performance Evaluation
8.1. Simulation Scenarios
8.2. Simulation Results
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Lemma 1
Appendix B. Proof of Lemma 2
Appendix C. Proof of Theorem 3
Appendix D. Proof of Theorem 4
References
- Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Dutta, S.; Taleb, T.; Frangoudis, P.A.; Ksentini, A. On-the-fly QoE-aware transcoding in the mobile edge. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; IEEE: Manhattan, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Gupta, P.; Kumar, P.R. The capacity of wireless networks. IEEE Trans. Inf. Theory 2000, 46, 388–404. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Thiran, P.; Towsley, D. Capacity of a wireless ad hoc network with infrastructure. In Proceedings of the 8th ACM International Symposium on Mobile AD HOC Networking and Computing, Montreal, QC, Canada, 9–14 September 2007; pp. 239–246. [Google Scholar]
- Kumari, S.; Saroha, A.; Singh, A. Efficient edge rewiring strategies for enhancement in network capacity. Phys. A Stat. Mech. Its Appl. 2020, 545, 123552. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Caire, G.; Molisch, A.F. Fundamental limits of caching in wireless D2D networks. IEEE Trans. Inf. Theory 2015, 62, 849–869. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xu, J.; Van Der Schaar, M.; Li, W. Popularity-driven content caching. In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE: Manhattan, NY, USA, 2016; pp. 1–9. [Google Scholar]
- Gong, H.; Guo, C.; Liu, Y. Measuring network rationality and simulating information diffusion based on network structure. Phys. A Stat. Mech. Its Appl. 2021, 564, 125501. [Google Scholar] [CrossRef]
- Grossglauser, M.; Tse, D.N. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 2002, 10, 477–486. [Google Scholar] [CrossRef]
- Kumar, V.A.; Marathe, M.V.; Parthasarathy, S.; Srinivasan, A. Algorithmic aspects of capacity in wireless networks. In Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Banff, AB, Canada, 6–10 June 2005; pp. 133–144. [Google Scholar]
- Zhang, J.; Yuan, P.; Liu, P. Research and simulations of cluster routing protocols in ad hoc networks. In Proceedings of the WRI World Congress on Software Engineering, Xiamen, China, 19–21 May 2009; pp. 509–512. [Google Scholar]
- Yuan, P.; Pang, X.; Lin, P.; Zhang, E. FollowMe: One Social Importance-Based Collaborative Scheme in MONs. Future Internet 2019, 4, 98. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, Z.; Fu, Z.; Peng, T.; Wang, W. Transmission capacity of device-to-device communication under heterogeneous networks with cellular users assisted. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GE, USA, 9–13 December 2013; IEEE: Manhattan, NY, USA, 2013; pp. 341–635. [Google Scholar]
- Jiang, D.; Xu, Z.; Li, W.; Chen, Z. Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks. J. Syst. Softw. 2015, 104, 152–165. [Google Scholar] [CrossRef]
- Fu, L.; Fu, X.; Zhang, Z.; Xu, Z.; Wu, X.; Wang, X.; Lu, S. Joint optimization of multicast energy in delay-constrained mobile wireless networks. IEEE/ACM Trans. Netw. 2018, 26, 633–646. [Google Scholar] [CrossRef]
- Rezaei, A.; Farzinvash, L. Online QoS multicast routing in multi-channel multi-radio wireless mesh networks using network coding. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019; IEEE: Manhattan, NY, USA, 2019; pp. 53–59. [Google Scholar]
- Li, X.Y.; Tang, S.J.; Frieder, O. Multicast capacity for large scale wireless ad hoc networks. In Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, Montreal, QC, Canada, 9–14 September 2007; pp. 266–277. [Google Scholar]
- Wang, C.; Shao, L.; Li, Z.; Yang, L.; Li, X.Y.; Jiang, C. Capacity scaling of wireless social networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 1839–1850. [Google Scholar] [CrossRef] [Green Version]
- Shakkottai, S.; Liu, X.; Srikant, R. The multicast capacity of large multihop wireless networks. In Proceedings of the 8th ACM International Symposium on Mobile AD HOC Networking and Computing, Montreal, QC, Canada, 9–14 September 2007; pp. 247–255. [Google Scholar]
- Talak, R.; Karaman, S.; Modiano, E. Capacity and delay scaling for broadcast transmission in highly mobile wireless networks. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Chennai, India, 10–14 July 2017; pp. 1–10. [Google Scholar]
- Lähderanta, T.; Leppänen, T.; Ruha, L.; Lovén, L.; Harjula, E.; Ylianttila, M.; Riekki, J.; Sillanpää, M.J. Edge computing server placement with capacitated location allocation. J. Parallel Distrib. Comput. 2021, 153, 130–149. [Google Scholar] [CrossRef]
- Niesen, U.; Shah, D.; Wornell, G.W. Caching in wireless networks. IEEE Trans. Inf. Theory 2012, 58, 6524–6540. [Google Scholar] [CrossRef]
- Liu, B.; Firoiu, V.; Kurose, J.; Leung, M.; Nanda, S. Capacity of cache enabled content distribution wireless ad hoc networks. In Proceedings of the 2014 IEEE 11th International Conference on Mobile AD HOC and Sensor Systems, Philadelphia, PA, USA, 28–30 October 2014; IEEE: Manhattan, NY, USA, 2014; pp. 309–317. [Google Scholar]
- Azimdoost, B.; Westphal, C.; Sadjadpour, H.R. On the throughput capacity of information-centric networks. In Proceedings of the 2013 25th International Teletraffic Congress (ITC), Shanghai, China, 10–12 September 2013; pp. 1–9. [Google Scholar]
- Qiu, L.; Cao, G. Popularity-aware caching increases the capacity of wireless networks. IEEE Trans. Mob. Comput. 2019, 19, 173–187. [Google Scholar] [CrossRef]
- Qiu, L.; Cao, G. Cache increases the capacity of wireless networks. In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE: Manhattan, NY, USA, 2016; pp. 1–9. [Google Scholar]
- Sun, Y.; Chen, Z.; Tao, M.; Liu, H. Bandwidth gain from mobile edge computing and caching in wireless multicast systems. IEEE Trans. Wirel. Commun. 2020, 19, 3992–4007. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, X.; Zhang, M.; Ulziinyam, B. Multicast-oriented task offloading for vehicle edge computing. IEEE Access 2020, 8, 187373–187383. [Google Scholar] [CrossRef]
- Hao, H.; Xu, C.; Yang, S.; Zhong, L.; Muntean, G.M. Multicast-aware optimization for resource allocation with edge computing and caching. J. Netw. Comput. Appl. 2021, 193, 103195. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Zhang, H. Cooperate caching with multicast for mobile edge computing in 5G networks. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; IEEE: Manhattan, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Yuan, P.; Li, S.; Cai, Y.; Zhao, X.; Tang, S.; Li, X. Maximizing the Capacity of Edge-Caching Networks with User-Content Evolution Relationship. IEEE Trans. Veh. Technol. 2022, 71, 12169–12178. [Google Scholar] [CrossRef]
- Spyropoulos, T.; Sermpezis, P. Soft cache hits and the impact of alternative content recommendations on mobile edge caching. In Proceedings of the Eleventh ACM Workshop on Challenged Networks, 2016, New York, NY, USA, 3–7 October 2016; pp. 51–56. [Google Scholar]
- Golzerai, N.; Shanmugam, K.; Dimakis, A.; Molisch, A.; Caire, G. Femtocaching: Wireless video content delivery through distributed caching helpers. In Proceedings of the IEEE International Conference on Computer Communications, Orlando, Florida, USA, 25–30 March 2012. [Google Scholar]
- Jiang, W.; Feng, G.; Qin, S. Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Trans. Mob. Comput. 2016, 16, 1382–1393. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, P.; Tang, S. Collaborative edge caching in context-aware device-to-device networks. IEEE Trans. Veh. Technol. 2018, 67, 9583–9596. [Google Scholar] [CrossRef]
- Yuan, P.; Cai, Y.; Huang, X.; Tang, S.; Zhao, X. Collaboration improves the capacity of mobile edge computing. IEEE Internet Things J. 2019, 6, 10610–10619. [Google Scholar] [CrossRef]
- Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–19. [Google Scholar] [CrossRef]
- Bettstetter, C. On the minimum node degree and connectivity of a wireless multihop network. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing, Lausanne, Switzerland, 9–11 June 2002; pp. 80–91. [Google Scholar]
Simulation area | 100 × 100 |
Number of SBSs | 100 |
Number of users | 200 |
10 | |
20 | |
Number of files | 5000 |
Buffer size of SBSs | 50 |
Communication range | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, P.; Li, M.; Li, S.; Liu, C.; Zhao, X. Maximizing the Capacity of Edge Networks with Multicasting. Appl. Sci. 2023, 13, 8424. https://doi.org/10.3390/app13148424
Yuan P, Li M, Li S, Liu C, Zhao X. Maximizing the Capacity of Edge Networks with Multicasting. Applied Sciences. 2023; 13(14):8424. https://doi.org/10.3390/app13148424
Chicago/Turabian StyleYuan, Peiyan, Ming Li, Shuhong Li, Chunhong Liu, and Xiaoyan Zhao. 2023. "Maximizing the Capacity of Edge Networks with Multicasting" Applied Sciences 13, no. 14: 8424. https://doi.org/10.3390/app13148424
APA StyleYuan, P., Li, M., Li, S., Liu, C., & Zhao, X. (2023). Maximizing the Capacity of Edge Networks with Multicasting. Applied Sciences, 13(14), 8424. https://doi.org/10.3390/app13148424