Variable-Weighted Error Propagation Model of a Ultra-Wide-Band Indoor Positioning System in an Intelligent Manufacturing Lab
Abstract
:1. Introduction
2. Related Work
No. | Author/Year | Model and Algorithm | Quantization | Application Scenarios | Data Sources |
---|---|---|---|---|---|
1 | D.P. Young, 2003 [16] | (a) Cross-correlation-based TDOA. (b) TDOA estimates from multiple antenna pairs. | Weighting functions | An unfinished 13 m wide, 20 m deep, and 12 m high anechoic chamber. | Simulated |
2 | A. Subramanin, 2005 [17] | (a) Nodes determine their location with the help of their neighbors. | Average mean and standard deviation | A simulation software: Glom-Mosim. | Simulated |
3 | Xu Yong, 2006 [18] | (a) ETDGE ranging algorithm. (b) Fang iterative locating mobile node algorithm. | Ranging error and average positioning error | Low-rate UWB communication systems in the mobile environment. | Numerical Simulation |
4 | M. Kok, 2015 [37] | (a) IMU combined with UWB. (b) Solve the maximum posterior problem. | Orientation and position estimation | Clock deviation occurs in UWB. | Physical Experiment |
5 | Z. Koppanyi, 2018 [33] | (a) An adaptive constraint used in the navigation filter. (b) IMU-detecting neural networks to determine the current dynamic state. | 10–30% (10–15 cm) improvement for 5–10 s long outages. | Unexploded ordinance mapping platform. | Experiment |
6 | C. Hua, 2020 [26] | (a) Spatial domain modeling principles of multipath mapping. (b) Improved nonlinear iterative algorithm with height component constraint. | Root-mean-square error, mean absolute error, and standard deviation | For a different indoor environment and layout of base stations. | Experiment |
7 | D. Feng, 2020 [28] | (a) The relationship between base station geometric distribution and base station precision factor. (b) UWB combine with IMU. | Root-mean-square error and CDF | Complex environment positioning. | Simulated and Experiment |
8 | K. Zhao, 2020 [29] | (a) An M/N-K sliding window to determine the loading and unloading of goods. (b) NLOS error is reduced based on RSS residual weighting. | Root-mean-square error and CDF | The intelligent warehousing management system. | Simulated and Experiment |
9 | M. Cimdins, 2020 [21] | The pulse response measurement of the UWB channel extracts multiple multipath components. | Mean localization error and ECDFs | The probability of position error in an indoor environment system is known. | Simulated |
10 | M. Ershadh, 2021 [24] | Estimation of the parameters of the underlying multipath structure in UWB indoor propagation channel. | Multipath parameters estimation | NLOS and LOS scenarios. | Simulated |
11 | Authors in this study | Dynamic error-propagation model used in UWB indoor positioning considering the multipath effect and atmospheric interference. | Root-mean-square error | Manufacturing production line. | Simulated and Experiment |
3. UWB Signal Propagation Properties
3.1. UWB Signal Generation
3.2. Temporal and Spatial Propagation of UWB Signals
4. Dynamic Error Propagation Model in UWB-Based Positioning
4.1. UWB Signal Generation
4.2. Errors Caused by Atmospheric Interferences
4.3. Dynamic Error Propagation Model
5. Case Study
5.1. UWB Positioning System Design
5.2. Experiment Environment
5.3. Measurement of Atmospheric Parameters
5.4. Experiment Results
5.4.1. Measured Error Distribution
5.4.2. Atmospheric Error
5.4.3. Dynamic Experiment and DEP Model
5.4.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2016, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Research on Indoor Positioning Method Based on Multi-Sensor Combination. Ph.D. Thesis, Nanchang University, Nanchang, China, 2020. (In Chinese). [Google Scholar]
- Xu, J.; Hao, W. WIFI Indoor Positioning Algorithm Based on Improved Kalman Filtering. In Proceedings of the 2016 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 17–18 December 2016. [Google Scholar]
- Wu, J.; Yuan, S.F.; Yin, Y.; Shang, Y.; Ding, J.W. Wireless Sensor Network based on ZigBee Technology and its Application research. Meas. Control Technol. 2018, 2008, 13–15, 20. [Google Scholar]
- Lv, Z.; Zhang, X.; Chen, D.; Li, D.; Wang, X.; Zhao, T.; Yang, Y.; Zhao, Y.; Zhang, X. The Development and Progress of the UWB Physical Layer. Micromachines 2022, 14, 8. [Google Scholar] [CrossRef]
- Kumar, O.P.; Ali, T.; Kumar, P.; Kumar, P.; Anguera, J. An Elliptical-Shaped Dual-Band UWB Notch Antenna for Wireless Applications. Appl. Sci. 2023, 13, 1310. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, D.; Bi, S.; Guo, H.; Zhuang, Y. A FIR filter assisted with the predictive model and ELM integrated for UWB-based quadrotor aircraft localization. Satell. Navig. 2023, 4, 2. [Google Scholar] [CrossRef]
- Djaja-Josko, V.; Kolakowski, J. A new method for wireless synchronization and TDOA error reduction in UWB positioning system. In Proceedings of the 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, Poland, 9–11 May 2016. [Google Scholar]
- Dabove, P.; Pietra, V.D.; Piras, M.; Jabbar, A.A.; Kazim, S.A. Indoor positioning using Ultra-wide band (UWB) technologies: Positioning accuracies and sensors’ performances. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018. [Google Scholar]
- Poulose, A.; Emeršič, Ž.; Eyobu, O.S.; Han, D.S. An Accurate Indoor User Position Estimator for Multiple Anchor UWB Localization. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020. [Google Scholar]
- Zhu, S.W.; Zhu, Q.; Hu, X.X.; Wang, H.; Kong, N. Application Technology of Intelligent High Precision Positioning System of Ship Workshop Based on UWB. Mar. Technol. 2020, 5, 72–76. (In Chinese) [Google Scholar]
- Yang, R.; Zhang, M.; Zhang, R.H. Research on UWB precise positioning technology in complex environment. Wirel. Internet Technol. 2023, 3, 100–102. [Google Scholar]
- Skolnik, M. Status of ultrawideband (UWB) radar and its technology. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1992 Digest 1992, Chicago, IL, USA, 18–25 June 1992; IEEE: Piscataway, NJ, USA, 1992; Volume 3, pp. 1224–1227. [Google Scholar]
- Keshavarz, S.N.; Hajizadeh, S.; Hamidi, M.; Omali, M.G. A Novel UWB Pulse Waveform Design Method. In Proceedings of the 2010 Fourth International Conference on Next Generation Mobile Applications, Services and Technologies, Amman, Jordan, 27–29 July 2010. [Google Scholar]
- Hussain, M.G.M. Principles of space-time array processing for ultra-wide-band impulse radar and radio communications. IEEE Trans. Veh. Technol. 2022, 51, 393–403. [Google Scholar] [CrossRef]
- Young, D.P.; Keller, C.M.; Bliss, D.W.; Forsythe, K.W. Ultra-wideband (UWB) transmitter location using time difference of arrival (TDOA) techniques. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. 1225–1229. [Google Scholar]
- Subramanian, A.; Lim, J.G. A Scalable UWB Based Scheme for Localization in Wireless Networks. In Proceedings of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 30 October–2 November 2005. [Google Scholar]
- Yong, X.; Hua, L.; Fei, H.; Qiu, W. TDOA Algorithm for UWB Localization in Mobile Environments. In Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 22–24 September 2006. [Google Scholar]
- Cramer, J.M.; Scholtz, R.A.; Win, M.Z. On the analysis of UWB communication channels. In Proceedings of the MILCOM 1999. IEEE Military Communications, Proceedings (Cat. No.99CH36341), Atlantic City, NJ, USA, 31 October–3 November 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2, pp. 1191–1195. [Google Scholar]
- Wang, J.G.; Mohan, A.S.; Aubrey, T.A. Angles-of-arrival of multipath signals in indoor environments. In Proceedings of the Vehicular Technology Conference—VTC, Atlanta, GA, USA, 28 April–1 May 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 1, pp. 155–159. [Google Scholar]
- Cimdins, M.; Schmidt, S.O.; Hellbrück, H. MAMPI-UWB—Multipath-Assisted Device-Free Localization with Magnitude and Phase Information with UWB Transceivers. Sensors 2020, 20, 7090. [Google Scholar] [CrossRef]
- Liu, M.; Lou, X.; Jin, X.; Jiang, R.; Ye, K.; Wang, S. NLOS Identification for Localization Based on the Application of UWB. Wirel. Pers. Commun. 2021, 2021, 3651–3670. [Google Scholar] [CrossRef]
- Spencer, Q.; Rice, M.; Jeffs, B.; Jensen, M. A statistical model for angle of arrival in indoor multipath propagation. In Proceedings of the IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 4–7 May 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 3, pp. 1415–1419. [Google Scholar]
- Ershadh, M.; Meenakshi, M. A New Modeling Methodology for Multipath Parameter Estimation in Ultrawideband Channels. IEEE Trans. Antennas Propag. 2021, 69, 2249–2255. [Google Scholar] [CrossRef]
- Mosbah, A.; Mansoul, A.; Benssalah, M.; Ghanem, F. Proportional adaptive algorithm to improve reception techniques and mitigate the multipath fading effect in sub-6 GHz 5G applications. Microw. Opt. Technol. Lett. 2021, 63, 1–7. [Google Scholar] [CrossRef]
- Hua, C.; Zhao, K.; Dong, D.; Zheng, Z.; Yu, C.; Zhang, Y.; Zhao, T. Multipath Map Method for TDOA Based Indoor Reverse Positioning System with Improved Chan-Taylor Algorithm. Sensors 2020, 20, 3223. [Google Scholar] [CrossRef]
- Su, C.J.; Li, S.L.; Yin, X.X.; Zhao, H.X. Method of Multipath Mitigation in TDOA-based Indoor Positioning System. J. Microw. 2019, 35, 47–51. (In Chinese) [Google Scholar]
- Feng, D.; Wang, C.; He, C.; Zhuang, Y.; Xia, X. Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation. IEEE Internet Things J. 2020, 7, 3133–3146. [Google Scholar] [CrossRef]
- Zhao, K.; Zhu, M.; Xiao, B.; Yang, X.; Gong, C.; Wu, J. Joint RFID and UWB Technologies in Intelligent Warehousing Management System. IEEE Internet Things J. 2020, 7, 11640–11655. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Wang, J.; Zhang, J.X. An Adaptive UWB/MEMS-IMU Complementary Kalman Filter for Indoor Location in NLOS Environment. Remote Sens. 2019, 11, 2628. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, J.X.; Wang, J.; Han, H.Z.; Yang, D. An UWB/Vision Fusion Scheme for Determining Pedestrians’ Indoor Location. Sensors 2020, 20, 1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Guan, M.; Tay, W.P.; Law, C.L.; Wen, C. UWB/LiDAR Fusion for Cooperative Range-Only SLAM. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Koppanyi, Z.; Navratil, V.; Xu, H.; Toth, C.K.; Grejner-Brzezinska, D. Using Adaptive Motion Constraints to Support UWB/IMU Based Navigation. J. Inst. Navig. 2018, 65, 247–261. [Google Scholar] [CrossRef]
- Yang, D.H.; Zhen, J.; Sui, X. Indoor positioning method combining UWB and LiDAR. Sci. Surv. Mapp. 2019, 44, 72–78. [Google Scholar]
- Li, Z.; Chang, G.; Gao, J.; Wang, J.; Hernandez, A. GPS/UWB/MEMS-IMU tightly coupled navigation with improved robust Kalman filter. Adv. Space Res. 2016, 58, 2424–2434. [Google Scholar] [CrossRef]
- Fan, Q.; Sun, B.; Sun, Y.; Zhuang, X. Performance Enhancement of MEMS-Based INS/UWB Integration for Indoor Navigation Applications. IEEE Sens. J. 2017, 17, 3116–3130. [Google Scholar] [CrossRef]
- Kok, M.; Hol, J.D.; Schön, T.B. Indoor Positioning Using Ultra wideband and Inertial Measurements. IEEE Trans. Veh. Technol. 2015, 64, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Li, P.L.; Zhou, Q.S.; Zhang, J.Y. UWB pulse design based on Gaussian derivative function. Commun. Technol. 2018, 51, 1511–1515. [Google Scholar]
- Yun, S.X.; Fu, N.; Qiao, L. Finite rate of innovation sampling of Gaussian pulse streams with variable shape. Digit. Signal Process. 2023, 136, 103976. [Google Scholar] [CrossRef]
- Hu, L.Q.; Zhu, H.B. Stochastic analysis model for ultra-wideband indoor multipath channels. Chin. J. Radio Sci. 2006, 21, 482–487. [Google Scholar]
- Yu, C. Estimation method of arrival Angle of UWB signal in dense multipath environment. Commun. Technol. 2009, 42, 161–164. [Google Scholar]
- Zhang, C.; Kuhn, M.; Merkl, B.; Fathy, A.E.; Mahfouz, M. Accurate UWB indoor localization system utilizing time difference of arrival approach. In Proceedings of the IEEE Radio and Wireless Symposium, San Diego, CA, USA, 17–19 October 2006. [Google Scholar]
- Lin, Z.D.; He, Q.Q. Error source analysis of ultra-wideband range measurement. J. Xiamen Univ. Technol. 2019, 1, 47–52. [Google Scholar]
- Alavi, B.; Pahlavan, K. Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Commun. Lett. 2006, 10, 275–277. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, W.H. Influence of Atmospheric Medium on the Accuracy of Electromagnetic Ranging. Chin. J. Radio Sci. 2006, 1, 632–634, 639. [Google Scholar]
Common Channel | Distance | Path Characteristics |
---|---|---|
CM1 | 0~4 m | LOS |
CM2 | 0~4 m | NLOS |
CM3 | 4~10 m | NLOS |
CM4 | Poor NLOS multipath channel |
Name | Type | Key Performance | Picutre |
---|---|---|---|
Base station | Woxu UA-220 | UWB 3.24 GHz~6.74 GHz Wifi 5.725 GHz~5.845 GF −41.3 dBm/MHz, DC 12 V~48 V POE IEEE 802.3 af/at, −20~65 °C | |
UWB tag | Woxu UT-212 | UWB 6.24 GHz–6.74 GHz, 6.8 Mbps, −41.3 dBm/MHz | |
Server computer | HP DL20Gen10 | CPU: Intel Xeon E-2314@ 2.8 GHz, RAM 32 GB, Disk: 4 TB ×2 |
Tag | Position | Tag | Position | Tag | Position |
---|---|---|---|---|---|
T1 | (155, 335) | T4 | (255, 335) | T7 | (355, 335) |
T2 | (155, 375) | T5 | (255, 375) | T8 | (355, 375) |
T3 | (155, 415) | T6 | (255, 415) | T9 | (355, 415) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhao, R.; Zhang, H.; Zhu, W.; Jia, P.; Li, C.; Ma, Y. Variable-Weighted Error Propagation Model of a Ultra-Wide-Band Indoor Positioning System in an Intelligent Manufacturing Lab. Appl. Sci. 2023, 13, 8400. https://doi.org/10.3390/app13148400
Zhang Z, Zhao R, Zhang H, Zhu W, Jia P, Li C, Ma Y. Variable-Weighted Error Propagation Model of a Ultra-Wide-Band Indoor Positioning System in an Intelligent Manufacturing Lab. Applied Sciences. 2023; 13(14):8400. https://doi.org/10.3390/app13148400
Chicago/Turabian StyleZhang, Zhishu, Rongyong Zhao, Hao Zhang, Wenjie Zhu, Ping Jia, Cuiling Li, and Yunlong Ma. 2023. "Variable-Weighted Error Propagation Model of a Ultra-Wide-Band Indoor Positioning System in an Intelligent Manufacturing Lab" Applied Sciences 13, no. 14: 8400. https://doi.org/10.3390/app13148400
APA StyleZhang, Z., Zhao, R., Zhang, H., Zhu, W., Jia, P., Li, C., & Ma, Y. (2023). Variable-Weighted Error Propagation Model of a Ultra-Wide-Band Indoor Positioning System in an Intelligent Manufacturing Lab. Applied Sciences, 13(14), 8400. https://doi.org/10.3390/app13148400