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Abstract: High precision positioning of UWB (ultra-wideband) in NLOS (non-line-of-sight)
environment is one of the hot issues in the direction of indoor positioning. In this paper, a method of
using a complementary Kalman filter (CKF) to fuse and filter UWB and IMU (inertial measurement
unit) data and track the errors of variables such as position, speed, and direction is presented. Based on
the uncertainty of magnetometer and acceleration, the noise covariance matrix of magnetometer and
accelerometer is calculated dynamically, and then the weight of magnetometer data is set adaptively
to correct the directional error of gyroscope. Based on the uncertainty of UWB distance observations,
the covariance matrix of UWB measurement noise is calculated dynamically, and then the weight
of UWB data observations is set adaptively to correct the position error. The position, velocity and
direction errors are corrected by the fusion of UWB and IMU. The experimental results show that
the algorithm can reduce the gyroscope deviation with magnetic noise and motion noise, so that the
orientation estimates can be improved, as well as the positioning accuracy can be increased with
UWB ranging noise.

Keywords: UWB positioning; adaptive filter; complementary Kalman filter; UWB/IMU fusing

1. Introduction

Ultra-wideband (UWB) positioning technology in indoor positioning can achieve decimeter
positioning accuracy, and has been widely used in hospital patient tracking, UAV (unmanned aerial
vehicle) positioning, supermarket shopping and so on [1–3]. In a line-of-sight (LOS) environment,
UWB has high ranging accuracy. The literature [4] shows that the accuracy is about 320 ± 30 mm
in an indoor office room. However, in some special scenarios, such as warehousing robot location,
emergency rescue, etc., the indoor environment is more complex, and the UWB signal may be blocked
by people, goods, or other obstacles, resulting in the signal multi-path effect, the intensity attenuation,
even signal loss and so on, which leads to the sharply decline of UWB positioning accuracy [5–7]. How
to obtain high positioning accuracy in the case of non-line-of-sight (NLOS) environment is a hot issue
for researchers [8–10]. The fusion of inertial measurement unit (IMU) and UWB is a trend to realize
indoor high precision and real-time positioning. Through the IMU integral data, the observations
of speed, direction, and position can be obtained. To a certain extent, it can not only eliminate the
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multi-path and non-line-of-sight effect caused by occlusion of UWB signal, but also increase the high
frequency attitude information of positioning results. When the error of IMU integral data increases,
the positioning result can be constrained by UWB positioning data.

From the results of these tests, it is possible to state that this kind of system could reach easily a
decimeter level of accuracy, a level of accuracy interesting for a large panorama of application.

There are a few reports in the literature on combining UWB and inertial sensors. Mäkelä et al. [11]
have discussed sensor fusion for cooperative infrastructure-free indoor navigation, utilizing foot
mounted IMUs, a barometer, and UWB, which can obtain accurate positioning on a floor level shown
in a realistic tactical test scenario. Sczyslo et al. [7,12] used the loose combination method, based on
extended Kalman filter (EKF) to track the movement of pedestrians. Some scholars have presented a
tightly coupled method which combines the UWB range with measurements of INS (inertial navigation
system) [13–15]. Although these methods do improve positioning precision and stability, the loss
of base station signals was not considered. Wang et al. [16] designed a GPS (global positioning
system)/INS/UWB tightly coupled experimental system based on adaptive robust KF (Kalman Filter).
Yet, it is only for outdoor use. Benini et al. [17] proposed a positioning method of UAV based on vision,
IMU and UWB, and its two-dimensional positioning accuracy can reach 10 cm. Li et al. [18] developed
a positioning method for UAV indoor navigation, which integrates the information of 3D laser scanner,
UWB, and INS, which show that the strategy improves positioning accuracy significantly compared
to INS-only and UWB-only approaches. In [19], Blanco et al. used a particle filter algorithm to fuse
UWB, IMU and odometer data, and achieved good location stability under the condition of NLOS.
Lukasz Zwirello et al. [20] studied the EKF loosely/tightly coupled integration of UWB/INS based
on the PDR (pedestrian dead reckoning) algorithm. In reference [21], an unscented Kalman filter is
applied to fuse inertial sensors and UWB data, and the average accuracy can reach 10–15 cm under
both dynamic and static conditions. However, the location trajectory of PDR algorithm itself is much
higher than that of IMU integral. Xu et al. [22] proposed an INS/UWB-integrated system, which can
provide real-time estimation with an accuracy of the order of 0.2 m. A hybrid INS/UWB localization
system was presented in [23], and the tightly/loosely coupled methods showed an average positioning
error of 3.06 m/2.68 m, respectively.

In the above methods, some are based on the auxiliary sensors such as vision, GPS and odometer,
and some are combined with the results of PDR calculation by using IMU. However, some only use
UWB data for a tight combination with INS, but use the location results of UWB up to 50 Hz or do
not take into account the processing method of UWB signal loss [24–26]. In this paper, CKF [27–29] is
used to estimate the error of the state, not the state itself, that is, the state value contains the error of
position, speed, and direction, and the bias of the accelerometer and gyroscope as shown in Figure 1,
the blue part. Accordingly, the observation consists of two parts: one is the difference between the
ranging (2 Hz) from the position of UWB and the position integrated by IMU to the ranging value
of UWB base station. The second is to observe the residual of the standard values of geomagnetism
and gravity between magnetometer, accelerometer and experimental environment. After these three
sets of residual data pass through CKF, the values of the five state variables are calculated iteratively.
The position, velocity, and direction errors will be directly fed back to the navigation equation to
calculate the results of error correction. The bias of the acceleration and the gyroscope are used to
correct the values of the original accelerometer and magnetometer, respectively. It is worth noting that
the accelerometer actually measures the gravity plus body acceleration, the magnetometer measures
the earth magnetic field plus disturbance. Body acceleration and magnetic disturbance will affect the
accuracy of direction correction to a certain extent.
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Figure 1. Algorithm block diagram. 
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state value, it can be assumed that the current state is correct, that is, the error of the state value is 
reset to zero. In this way, in each prediction calculation of CKF, only the calculation of system 
covariance P is needed. In the update stage, the measurement matrix H can be simplified because the 
observation equation has no prior error.  

The remainder of the paper is organized as follows: In Section 2, the fusion algorithm of UWB 
and IMU based on CKF is discussed, and the motion model and observation model of the algorithm 
are given. The uncertainty setting method of different observation values in the observation model is 
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two bias vectors are under body frame (b-frame). Before integrating the IMU data, the bias vector 
needs to be removed. 

The differential equation of system dynamic model under continuous time is defined as follows:  𝑋  = 𝐹𝑋 + 𝑊   (1) 𝐹 is the state transition matrix and 𝑊 is the system noise. In order to facilitate the processing of 
EKF algorithm, the formula (1) is discretized into  𝑋  = ∅ 𝑋 + 𝑊    (2) ∅ = 𝑒    (3) 𝐹  is the transition matrix at k time. In order to determine 𝐹 , the transformation formula of state 
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Figure 1. Algorithm block diagram.

CKF has three advantages [20,30,31]: first, there is no need to define a motion model, that is,
the algorithm can be used for both vehicle and pedestrian applications. Secondly, the error of the state
is stored rather than the state itself. When the system is linearized, it can be approximated by a smaller
quantity, and a relatively more accurate result can be obtained. Finally, after each correction of the state
value, it can be assumed that the current state is correct, that is, the error of the state value is reset to
zero. In this way, in each prediction calculation of CKF, only the calculation of system covariance P is
needed. In the update stage, the measurement matrix H can be simplified because the observation
equation has no prior error.

The remainder of the paper is organized as follows: In Section 2, the fusion algorithm of UWB
and IMU based on CKF is discussed, and the motion model and observation model of the algorithm
are given. The uncertainty setting method of different observation values in the observation model
is analyzed in detail. Subsequently, several experiments are analyzed in Section 3, and Section 4
concludes the paper.

2. Fusion Location Algorithm of IMU/UWB

2.1. State Model

Following the method in [32,33], the state of CKF algorithm is defined as follows: X =

[ δpn δvn ε bg ba ], where δpn is the position error, δvn is the velocity error, ε is the directional error, bg

is the bias of the gyroscope, and ba is the bias of acceleration. X is a 15-dimensional vector. The first
three navigation state vectors are under the navigation coordinate system (n-frame), and the last two
bias vectors are under body frame (b-frame). Before integrating the IMU data, the bias vector needs to
be removed.

The differential equation of system dynamic model under continuous time is defined as follows:

.
X = FX + W (1)
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F is the state transition matrix and W is the system noise. In order to facilitate the processing of
EKF algorithm, the formula (1) is discretized into

Xk+1 = ∅kXk + Wk (2)

∅k = eFkdt (3)

Fk is the transition matrix at k time. In order to determine Fk, the transformation formula of state
X must be derived.

2.1.1. The Equation of Acceleration and Gyroscope Bias

The measuring equations of acceleration and gyroscope are as follows:

f̃ b= f b +ba + na (4)

ω̃b= ωb +bg + ng (5)

f̃ b and ω̃b are the measured values of acceleration and gyroscope, f b and ωb are the true values
of acceleration and gyroscope, na and ng are the measurement noise of the acceleration and the
gyroscope, respectively, which satisfy the Gaussian distribution, and the covariance are defined as
Na,Ng, respectively. ba and bg are drift bias of the acceleration and the gyroscope, which are not a static
value, but a time-dependent first-order Markov process, defined as follows:

.
ba = −ta

−1 ba + µa (6)

.
bg = −tg

−1 bg + µg (7)

µa and µg are offset noise of the acceleration and the gyroscope, respectively, and satisfies Gaussian
distribution, and the covariance are defined as Ua, Ug, respectively.

2.1.2. The Directional Error Equation

The directional error ε is caused by the gyro error and is defined as follows:

.
ε = Cn

b δω
b (8)

Cn
b represents the conversion from b-frame to n-frame, while δωb is the measurement error of the

gyroscope, which is caused by drift bias and noise:

δωb bg + ng (9)

2.1.3. The Error Equation of Velocity and Position

The velocity error is caused by acceleration error and direction error, and is defined as:

δ
.
vn

= [ f n
×]ε+ Cn

bδ f b (10)

[ f n
×]ε represents the effect of directional error on acceleration, δ f b is the measurement error of

acceleration, which is caused by drift bias and noise and is defined as:

δ f b= ba + na (11)

The position error is defined as:
δ

.
pn

= δvn (12)
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From the error equation, the state transition matrix F of the system is deduced as follows:

F =



0
0
0
0
0

I
0
0
0
0

0
[ f n
×]

0
0
0

0
0
−Cn

b
diag

(
−tg
−1

)
0

0
Cn

b
0
0

diag
(
−ta
−1

)


(13)

The system noise W is:

W =


0

Cn
b na

−Cn
b ng

µa

µg


(14)

The covariance matrix of system noise W is:

Q =


Na

0
0
0

0
Ng

0
0

0
0

Ua

0

0
0
0

Ug

 (15)

Define the noise transformation matrix as:

G =


0

Cn
b

0
0
0

0
0
−Cn

b
0
0

0
0
0
I
0

0
0
0
0
I


(16)

The noise covariance matrix is discretized to:

Qk =
1
2
(∅kGQG′ + GQG′∅k

′) (17)

Thus far, ∅k, Qk in the prediction equation of CFK algorithm was defined, while Zk, Hk, Rk and
other matrices were defined in Section 2.2.

2.2. The Observation Model

2.2.1. UWB Observations

There are n base stations with known coordinates (four used in the experiment), Si = (Sx,i, Sy,i,
Sz,i), i ∈ (1, n).

The observation function is defined as:

h
(
δp̂n

k

)
=


‖S1 −

(
δp̂n

k + p̂ins,k
)
‖ − ‖S1 − p̂ins,k‖

...
‖S4 −

(
δp̂n

k + p̂ins,k
)
‖ − ‖S4 − p̂ins,k‖

 (18)

where p̂ins,k = (x̂k, ŷk, ẑk) represents the position coordinates calculated by INS. δp̂n
k = (δx̂k, δŷk, δẑk)

represents a priori position error calculated by the state transition equation. ‖.‖ represents the Euclidean
distance. The formula (18) represents the difference between the ranging value after considering the
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position error and the ranging value from the INS integral position without considering the position
error to the base station. The Jacobian matrix of the observation equation is defined as follows:

Hk =
δ
(
h
(
δp̂n

k

))
δ
(
δp̂n

k

) =


Sx1−(x̂k+δx̂k)

‖S1−(δp̂n
k+p̂ins,k)‖
...

Sx4−(x̂k+δx̂k)

‖S4−(δp̂n
k+p̂ins,k)‖

Sy1−(ŷk+δŷk)

‖S1−(δp̂n
k+p̂ins,k)‖
...

Sy4−(ŷk+δŷk)

‖S4−(δp̂n
k+p̂ins,k)‖

Sz1−(ẑk+δẑk)

‖S1−(δp̂n
k+p̂ins,k)‖
...

Sz4−(ẑk+δẑk)

‖S4−(δp̂n
k+p̂ins,k)‖

01×12
...

01×12

 (19)

Observations are defined as:
Zk,i = rk,i − ‖Si − p̂ins,k‖ (20)

rk is the ranging data of UWB. The formula (20) represents the distance difference between the
ranging data of the UWB and the distance to the base station calculated from the INS position.

The standard observation equation is defined as follows:

Zk = HkXk + Vk (21)

Vk is the measurement noise matrix, Vk ∼ N(0, Rk).
For UWB data, the accuracy of UWB sensor observations may be affected by ambient temperature,

power supply stability, fixed obstacles, and even people or objects moving in the positioning scene.
Therefore, it is necessary to estimate the confidence of UWB observations. A correlation method based
on UWB positioning residual is designed.

In order to simplify the description, there are three base stations, and in the plane location, it is
assumed that the UWB base station with the coding number i is recorded as Beaconi, and its seat is
marked (xi, yi). The UWB tag used for positioning is marked tag, and its seat is marked (x, y). The real
distance between tag and Beaconi is recorded as ri, and the measured value of this distance is recorded
as r′i . As Figure 2 shows, ideally, r′i = ri, where the only point can be determined by the intersection of
three circles, is the location of the tag under the current observation data. In order to obtain the solution
of this point, an error function is defined, and the coordinates of tag are obtained by minimizing the
error function. One possible error function is:

E(x, y) =
n∑
i

abs
(√(

(x− xi)
2 + (y− yi)

2
)
− r′i

)
(22)

where, abs() represents an absolute function. The coordinates (x′, y′) can be obtained by minimizing
E(x, y), that is:

(x′, y′) = argmin(x,y)E(x, y) (23)

Ideally, the minimum value of E(x, y) is 0. However, in practical application, the measured value
often has a certain deviation. Suppose ri still represents the real distance, and the deviation of ri
is recorded as ∆ri. At this point, the measured value of the corresponding Beaconi is r′i = ri + ∆ri.
Figure 3 shows the area where the circles represented by the three beacon measurements around
the tag intersect. In the case of errors in the measurements, the three circles do not intersect at one
point, but intersect in pairs. In this case, the estimate of the tag coordinates (x′, y′) is still obtained by
minimizing E(x, y). Generally speaking, when the error of r′i is large, the value of ∆ri is also larger.

The uncertainty for defining UWB data is as follows:

Cui = max(αue∆ri ,Cu_max) (24)

Cui ∈ [0,+∞], i ∈ [1, n]. The value of αu is a constant, which is an estimate of the overall residual value
and indicates the degree of distrust in the original UWB data. When the value of αu or ∆ri is higher,
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the more unreliable the data is. Cu_max is to limit the value of Cui in a certain range, otherwise it is easy
to appear singular matrix. The measurement noise matrix Rk of UWB is defined as follows:

Rk =


σ2

s1Cu1

0
0
0

0
σ2

s2Cu2

0
0

0
0

σ2
s3Cu3

0

0
0
0

σ2
s4Cu4

 (25)

σ2
si represents the covariance of the ranging value from the No.i UWB base station to the tag.

If there are less than three values in the ranging data due to occlusion and other reasons, the effective
residual cannot be obtained. In the experiment, if the sum of the two ranging values is greater than
the distance between the two base stations, the residual is 0, and Cu = αu. The range values that are
obscured and cannot be obtained should be removed from the corresponding rows in Rk and Zk.
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2.2.2. Observations of Accelerometers and Magnetometers

The error observations of accelerometers and magnetometers are defined as follows:

δ f n= Cn
b f̂ b
− gn (26)

δmn= Cn
b m̂b
− mn (27)

f̂ b and m̂b are offset compensated measurements, respectively.gn and mn are the standard values
of gravity acceleration and geomagnetic field in the navigation system.

The observation vector is defined as:

Zk =
[
δ f b, δmb

]
(28)

The observation equation is defined as follows:

Zk = HkXk + Vk (29)

The observation model matrix Hk is defined as follows:

Hk =


I
0
0

0
0
0

0
Cb

n[gn
×]

Cb
n[mn

×]

0
0
0

0
0
0

 (30)

Vk is the measurement noise matrix, Vk ∼ N(0, Rk). In general, the measurement noise covariance
matrix Rk is constant, but in fact, Rk is closely related to the specific sensor application environment.
For gravity data, pitch and roll angle can be estimated. On the other hand, the geomagnetic data
can be used to estimate the yaw angle. However in fact, body acceleration cannot be neglected with
comparison to gravity, and the geomagnetic data will also have disturbance, which will affect the
accuracy of the direction correction. In order to reduce the influence of the direction calculation of the
noise data, a method based on dynamic Rk matrix is designed.

The magnitude residual (Em
m) of the magnetometer and the magnitude residual (Em

g ) of the gravity
acceleration are defined as follows:

Em
m = max

(
‖m̂b
‖

‖mn‖
,
‖mn
‖

‖m̂b‖

)
(31)

Em
g = max

 ‖ f̂ b
‖

‖gn‖
,
‖gn
‖

‖ f̂ b‖

 (32)

‖.‖ is taken as the normal value. Both Em
m and Em

g ∈ [1,+∞], which represent the degree of deviations
of the measured values m̂b and f̂ b from the standard values mn and gn on magnitude. The direction
residual (Ed

m) of the magnetometer and the direction residual (Ed
g) of the gravity acceleration are also

defined as follows:

Ed
m = ‖

m̂b

‖m̂b‖
−

mn

‖mn‖
‖ (33)

Ed
g = ‖

f̂ b

‖ f̂ b‖
−

gn

‖gn‖
‖ (34)

Both Ed
m and Ed

g∈ [0,+∞]. Define the uncertainty of the magnetometer and acceleration data
as follows:

Cm = max(eαmEm
mEd

m , Cm_max) (35)

Cg = max( eαgEm
g Ed

g , Cg_max ) (36)
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Both Cm and Cg∈ [0,+∞]. Cm_max and Cg_max are to limit the values of Cm and Cg in a certain range,
otherwise singular matrices are easy to appear. Both αm and αg are greater than zero, indicating the
degree of distrust in the original data of the magnetometer and the acceleration. The greater value of α
or E, the less reliable the data is. Finally, the mean of Rk is defined as follows:

Rk =

 σ2
f Cg 0

0 σ2
mCm

 (37)

σ2
f , σ2

m represent the covariance of the acceleration and magnetometer measurements, respectively.

2.3. INS Navigation Equation

Through the integration of gyroscope and acceleration data, the direction, velocity, position, and
other data under the navigation system can be obtained. The INS navigation equation is defined
as follows:

.
pn
= vn (38)

.
vn
= vnCn

b f b + gn (39)
.
C

n
b = Cn

b [ω
b
×] (40)

gn is the gravity vector under n-frame, fb is the acceleration vector under b-frame, ωb =

[ωb
x ,ωb

y,ωb
z ] is the angular velocity under b-frame, and [ωb

×] is the skew-symmetric matrix of the
angular velocity, as follows:

[ωb
×]=


0 −ωb

z ωb
y

ωb
z 0 −ωb

x
−ωb

y ωb
x 0

 (41)

For acceleration and gyroscope observations at k time, the offset value calculated by the CKF
algorithm is first removed), as follows:

f̂ b
k = f̃ b

k − ba (42)

ω̂b
k= ω̃b

k − bg (43)

f̃ b
k and ω̃b

k represent the original observations of the acceleration and angular velocity, and f̂ b
k and

ω̂b
k represent the offset compensated values.

The transformation of acceleration from k time to k+1 time is as follows:

f̂ n
k+1= Cn

b

(
f̃ b
k + 0.5

(
ω̃b

kdt ⊗ f̃ b
k

))
− gn (44)

⊗ represents the vector cross multiplication and the rotation correction of the acceleration caused
by the change of angular velocity.

The transformation of the speed from the k time to the k+1 time is as follows:

vn
k+1 = vn

k+ f̂ n
k+1dt − δvn

k (45)

δvn
k represents the error of the velocity at k time, which is cyclically calculated by the CKF algorithm.

The change of position from k time to k+1 time is as follows:

pn
k+1 = pn

k+0.5
(
vn

k+vn
k+1)dt − δpn

k (46)

δpn
k represents the error of the position at k time, which is cyclically calculated by the CKF algorithm.

The change of posture from k time to k+1 time is as follows:

Cn
b,k+1′= (I− [ε×])Cn

b,k (47)
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Cn
b,k+1 = Cn

b,k+1′
(
I +

[
ω̃b

kdt×
])

(48)

The value of Cn
b,k+1

′ represents the result of correcting the orientation error of the pose change
matrix Cn

b,k at k time, and the error ε is calculated cyclically by CKF algorithm. Then, for Cn
b,k+1′,

the rotation compensation, from k time to k + 1 time is carried out to obtain the rotation matrix Cn
b,k+1.

In order to improve the accuracy of attitude values, the value of Cn
b,k+1 requires periodic normalization.

3. Experiment

A test site is set up in the underground garage of a university. As shown in Figure 4, four UWB
base stations are placed on four corners of the rectangular area. The IMU device chose X-IMU from
X-IO company in the UK. The core chip of UWB tag/base station is DWM1000 chip of Decawave
Company. The UWB tag is fixed to the car. At the same time, the IMU is fixed 5 cm below the UWB tag.
In order to keep the data of IMU and UWB synchronized, the notebook in the car receives ranging
data from IMU and UWB at the same time. In the process of clockwise movement, the car basically
maintains a uniform speed.
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In the experimental analysis, first of all, the positioning results are analyzed. Then the influence on
the positioning results is analyzed from different types of observations, such as geomagnetic residual,
gravity residual, ranging residual and so on.

3.1. Analysis of Location Results of Route 1

3.1.1. Positioning Trajectory Analysis

The location result of path 1 is given in Figure 6. The left figure is the location result given by
the optimization algorithm. In general, with the exception of a few points deviating from the overall
trajectory, the rest of the anchor points are aggregated on the path of the car motion. The right image
shows the trajectory of the fusion of UWB and IMU. It can be seen that the fusion trajectory gives a
higher frequency of positioning results, and provides attitude information for each positioning result.
Compared with the left image, the track of the right image is smoother.
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The main state of the fusion algorithm is shown in Figure 7. From top to bottom, they are the
bias of the acceleration, the bias of the gyroscope, the change of velocity, and angle in turn. Because
the residual of UWB ranging data is relatively small, the integral drift of INS is well constrained,
and the bias of velocity and acceleration is effectively modified. As can be seen from subfigure 3 of
Figure 7, the speed value is basically about ±1 meter, which is consistent with the actual value. As can
be seen from subfigure 4 of Figure 7, through the correction of the opposite direction value of the
magnetometer and accelerometer, the bias of the gyroscope can be estimated effectively. In addition,
the angle change of the trolley movement on path 1 is relatively regular, and the angle value is close to
the actual value. Subfigures 1 and 2 are bias values estimated from position and angle updates, which
are subtracted from each integral of the accelerometer and gyroscope.
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to the actual value. Subfigures 1 and 2 are bias values estimated from position and angle updates, 
which are subtracted from each integral of the accelerometer and gyroscope. 
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3.1.2. Analysis of Geomagnetism and Gravity Residual 

From the above figure, it can be seen that the magnetic field data in the whole path 1 is relatively 
stable, and the geomagnetism changes regular with the attitude change of the trolley in two 
consecutive circles. Initially, the car stood still. The geomagnetic data for a period of time (5 to 10 
seconds) are collected and converted to n-frame as the environmental standard geomagnetic data (𝑚  
in the second part of Section 2.2). If there is no geomagnetic interference in the environment, all 
subsequent geomagnetic data should be equal to the standard geomagnetic data after they are 
converted to n-frame. On this basis, the transformation matrix 𝐶  from b-frame to n-frame in the 
whole process of motion can be obtained. 

Figure 7. Main state variables of fusion algorithm.

3.1.2. Analysis of Geomagnetism and Gravity Residual

From the above figure, it can be seen that the magnetic field data in the whole path 1 is relatively
stable, and the geomagnetism changes regular with the attitude change of the trolley in two consecutive
circles. Initially, the car stood still. The geomagnetic data for a period of time (5 to 10 seconds)
are collected and converted to n-frame as the environmental standard geomagnetic data (mn in the
second part of Section 2.2). If there is no geomagnetic interference in the environment, all subsequent
geomagnetic data should be equal to the standard geomagnetic data after they are converted to n-frame.
On this basis, the transformation matrix Cn

b from b-frame to n-frame in the whole process of motion
can be obtained.

The bottom figure in Figure 8 shows the difference between the magnetometer data converted
to n-frame and the environmental standard geomagnetic data mn, which should ideally be zero.
The non-zero value in the graph comes from the influence of two cases: one is that the geomagnetism
in the environment is unstable; the other is that the calculation of the transformation matrix Cn

b itself is
not completely accurate. However, due to the relatively small error, it can be seen from Table 1 that the
average geomagnetic error is not more than 0.2 g. Therefore, it is theoretically feasible to calculate the
direction of geomagnetism in this environment.
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For gravity data, similar to magnetometer data, accelerometer data collected for an initial rest 
period (5 to 10 seconds) are converted to n-frame as environmental standard gravity data (𝑔  in the 
second part of Section 2.2). If the interference of acceleration in the motion of the car is ignored, all 
subsequent accelerometer data should be equal to the standard gravity data converted to n-frame. 
On this basis, the transformation matrix 𝐶  from b-frame to n-frame in the whole process of motion 
can be obtained. 

Figure 8. Magnetic field and its residual data in path 1.

Table 1. Geomagnetic residual in path 1 (Gauss).

Coordinate Axis Average of Absolute Value Max Min

X 0.0449 0.1188 −0.1180
Y 0.1564 0.2720 −0.0125
Z 0.0287 0.0839 −0.0783

For gravity data, similar to magnetometer data, accelerometer data collected for an initial rest
period (5 to 10 seconds) are converted to n-frame as environmental standard gravity data (gn in the
second part of Section 2.2). If the interference of acceleration in the motion of the car is ignored,
all subsequent accelerometer data should be equal to the standard gravity data converted to n-frame.
On this basis, the transformation matrix Cn

b from b-frame to n-frame in the whole process of motion
can be obtained.

As shown in Figure 9, the above figure shows the acceleration data for path 1, and the following
figure shows the difference between the accelerometer data converted to n-frame and the standard
gravity data gn, which should ideally be zero. The non-zero value in the graph comes from the influence
of two cases: one is that the motion of the trolley is actually non-uniform and moving under the
acceleration caused by the periodic pulling force; the other is that the calculation of the transformation
matrix Cn

b itself is not completely accurate. As can be seen from Table 2, the error between X- and Z-axis
is relatively small, and the average gravity residual is less than 0.8 G. The average gravity residual
of the Y-axis is about 2 G, which explains why the acceleration residual of the Y-axis is increasing
in subfigure 1 of Figure 7. Generally speaking, the calculation of gravity constraint direction in this
environment is still feasible in theory, but its confidence is lower than that of geomagnetic data.
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3.1.3. Residual Analysis of UWB Data 

As can be seen in Figure 10, the UWB ranging data of route 1 is partially obscured by the column, 
resulting in a state of discontinuity. The corresponding Δ𝑟  is shown in Figure 11. The columns of 
different colors represent the ranging residual value of the corresponding base station respectively. 
As can be seen from Figure 10, the ranging value is relatively unstable at several peaks, because the 
ranging error of UWB increases with the increase of distance. In Figure 11, the ranging residual 
increases accordingly. By analyzing the proportion of ranging residual, the weight of covariance of 
observation values of different base stations is determined dynamically. As can be seen from Table 3, 
the average ranging residual of the four base stations is less than 0.1 meters, indicating that the overall 
quality of path 1 is high. The minimum residual value of 0 indicates that the ranging value is obscured 
at a certain time, and the residual error is not calculated at this time. 

Figure 9. Acceleration and gravity residual data in path 1.

Table 2. Gravity residual data in path 1 (m/s2).

Axial Direction Average of Absolute Value Max Min

X 0.7248 4.8814 −3.7402
Y 2.0226 6.0312 −1.5509
Z 0.6095 3.4986 −3.4159

3.1.3. Residual Analysis of UWB Data

As can be seen in Figure 10, the UWB ranging data of route 1 is partially obscured by the column,
resulting in a state of discontinuity. The corresponding ∆ri is shown in Figure 11. The columns of
different colors represent the ranging residual value of the corresponding base station respectively.
As can be seen from Figure 10, the ranging value is relatively unstable at several peaks, because the
ranging error of UWB increases with the increase of distance. In Figure 11, the ranging residual
increases accordingly. By analyzing the proportion of ranging residual, the weight of covariance of
observation values of different base stations is determined dynamically. As can be seen from Table 3,
the average ranging residual of the four base stations is less than 0.1 meters, indicating that the overall
quality of path 1 is high. The minimum residual value of 0 indicates that the ranging value is obscured
at a certain time, and the residual error is not calculated at this time.
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Table 3. Ranging residual data in path 1 (m).

Base Station Average of Absolute Value Max Min

Beacon1 0.0910 0.5882 0
Beacon2 0.0733 0.6012 0
Beacon3 0.0688 0.5283 0
Beacon4 0.0919 0.4413 0

3.2. Analysis of Location Trajectory of Route 2

3.2.1. Location Trajectory Analysis

The location result of path 2 is given in Figure 12, and the left figure is the location result given by
the optimization algorithm. Because more positions on path 2 are blocked by stone columns, coupled
with the human interference of the testers, there are many of anomalies that deviate from the trajectory.
The right image is the trajectory of UWB and IMU fusion, it can be seen that the fusion track gives
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a higher frequency positioning results, compared with the left image, the right trajectory effectively
shielded the abnormal points of the left image, and the trajectory is smoother.
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By dynamically increasing the covariance of ranging outliers, the influence of anomalies on the fusion 
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3.2.3. Residual Analysis of UWB Data

As can be seen in Figure 16, the UWB ranging value of route 2 has changed greatly at some time
due to the occlusion of stone columns and human interference. The corresponding ∆ri is shown in
Figure 17, and the optimal residual also increases at the ranging jump point. As can be seen from
Table 4, although the average ranging residual of the four base stations is about 0.2 m, the highest
residual value is more than two meters, which will cause the outlier with large positioning deviation.



Remote Sens. 2019, 11, 2628 18 of 21

By dynamically increasing the covariance of ranging outliers, the influence of anomalies on the fusion
algorithm can be shielded.

 
 Figure 16. Comparison of uncertainty and error of geomagnetic data in path 2. 

As can be seen from Figure 18, the sample points with large residual errors in Figure 17 also 
have greater uncertainty values in Figure 18. That is, Figure 18 exponentially magnifies the residual 
in Figure 17 to increase the sensitivity to the residual data.  
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Table 4. Ringing residual in route 2 (m).

Base Station Average of Absolute Value Max Min

Beacon1 0.1362 4.0561 0
Beacon2 0.1400 2.5900 0
Beacon3 0.1781 8.2678 0
Beacon4 0.2304 9.5135 0
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As can be seen from Figure 18, the sample points with large residual errors in Figure 17 also have
greater uncertainty values in Figure 18. That is, Figure 18 exponentially magnifies the residual in
Figure 17 to increase the sensitivity to the residual data.

 
Figure 18. Uncertainty of UWB residual data in path 2. 

Table 4. Ringing residual in route 2 （m）.  

Base station Average of absolute value Max Min 
Beacon1 0.1362 4.0561 0 
Beacon2 0.1400 2.5900 0 
Beacon3 0.1781 8.2678 0 
Beacon4 0.2304 9.5135 0 

Generally speaking, the fusion algorithm can dynamically give the corresponding confidence 
according to the gravity residual, geomagnetism residual and ranging residual in route 1 and 2, so as 
to evaluate the observed values effectively and improve the accuracy and robustness of the fusion 
algorithm. 

4. Conclusions 

In this paper, a fusion location method of UWB and IMU based on adaptive CKF is presented. 
The algorithm optimizes the location results by adaptively setting the weights of UWB data, magnetic 
field data, and acceleration data and so on. Firstly，through the analysis of UWB ranging data, it can 
be seen that in non-line-of-sight environment, the accuracy of UWB ranging will be affected. 
However, by dynamically increasing the covariance of ranging outliers, the influence of anomalies 
on the fusion algorithm can be shielded. Secondly, with the analysis of geomagnetic and gravity data 
in the experimental scene, the residual of geomagnetic and gravity data is small, which can meet the 
needs of heading calculation. However, the credibility of geomagnetic data is better than that of 
gravity data. Then, the fusion of UWB and IMU not only can eliminate the multi-path and non-line-
of-sight effect caused by occlusion of UWB signal, but also restricts the drift of INS, corrects the 
deviation of velocity and acceleration, and realizes the complementary advantages. However, there 
are two good prerequisites in the experiment. That is, the motion of the car is relatively stable and the 
experimental geomagnetic data are relatively stable. Thus, in the face of more complex motion 
patterns such as rapid acceleration and stop, as well as more and stronger geomagnetic interference 
environment, better motion models and algorithms need to be studied and further tested. 
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Figure 18. Uncertainty of UWB residual data in path 2.

Generally speaking, the fusion algorithm can dynamically give the corresponding confidence
according to the gravity residual, geomagnetism residual and ranging residual in route 1 and 2,
so as to evaluate the observed values effectively and improve the accuracy and robustness of the
fusion algorithm.

4. Conclusions

In this paper, a fusion location method of UWB and IMU based on adaptive CKF is presented.
The algorithm optimizes the location results by adaptively setting the weights of UWB data, magnetic
field data, and acceleration data and so on. Firstly, through the analysis of UWB ranging data, it can be
seen that in non-line-of-sight environment, the accuracy of UWB ranging will be affected. However,
by dynamically increasing the covariance of ranging outliers, the influence of anomalies on the
fusion algorithm can be shielded. Secondly, with the analysis of geomagnetic and gravity data in the
experimental scene, the residual of geomagnetic and gravity data is small, which can meet the needs
of heading calculation. However, the credibility of geomagnetic data is better than that of gravity
data. Then, the fusion of UWB and IMU not only can eliminate the multi-path and non-line-of-sight
effect caused by occlusion of UWB signal, but also restricts the drift of INS, corrects the deviation of
velocity and acceleration, and realizes the complementary advantages. However, there are two good
prerequisites in the experiment. That is, the motion of the car is relatively stable and the experimental
geomagnetic data are relatively stable. Thus, in the face of more complex motion patterns such as
rapid acceleration and stop, as well as more and stronger geomagnetic interference environment, better
motion models and algorithms need to be studied and further tested.
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