An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring
Abstract
:1. Introduction
Our Contribution
2. Materials and Methods
2.1. Materials
2.2. Methods
3. The ECG Circuit Design
3.1. The Block Diagram of the Circuit
3.2. The Schematic Diagram of the ECG Circuit
3.2.1. The Instrumentation Amplifier
3.2.2. The Right Leg Drive (RLD)
3.2.3. The High Pass Filter
3.2.4. The Low Pass Filter
3.2.5. The Notch Filter
3.2.6. The Summing Amplifier
3.2.7. The Peak Detector
4. The ECG Circuit Simulation
The ECG Signal Generation
5. The ECG Circuit Connection on Bread Board
6. The Printed Circuit Board Design
7. The Final Device
8. Results and Discussion
8.1. The Simulation Results
8.2. The Results Measured from the Bread Board
8.3. The Results Measured from the Final Device
9. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, A.; Alcaraz, R.; Rieta, J.J. Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiol. Meas. 2010, 31, 1467–1485. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, A.; Ramachandran, V. System for Detection of Vital Signals with an Embedded System. Afr. J. Inf. Commun. Technol. 2011, 6, 22–30. [Google Scholar]
- Al-omary, A. Heart Disease Monitoring System Using Web and Smartphone. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2014, 3, 8265–8273. [Google Scholar]
- Amour, N.; Hersi, A.; Alajlan, N.; Bazi, Y.; Alhichri, H. Implementation of a Mobile Health System for Monitoring ECG signals. In Proceedings of the BioMedCom 2014 Conference, Cambridge, MA, USA, 14–16 December 2014; pp. 1–7. [Google Scholar]
- Belgacem, N.; Bereksi-reguig, F. Bluetooth Portable Device for ECG and Patient Motion Monitoring. Nat. Technol. 2011, 3, 19–23. [Google Scholar]
- Camps-valls, G.; Caama, A.J.; Guerrero-mart, J.F. ECG Signal Processing, Classification and Interpretation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 195–217. [Google Scholar]
- Yadav, U.; Pancholi, U.; Tugnawat, A.; Patnaik, R. Designing of portable and low cost ECG signal acquisition system. J. Biol. Eng. Res. Rev. 2014, 1, 26–31. [Google Scholar]
- Jamil, M.A.; Soon, C.; Achilleos, A.; Youseffi, M.; Javid, F. Electrocardiograph (ECG) Circuit Design and Software-based Processing using LabVIEW. J. Telecommun. Electron. Comput. Eng. 2018, 9, 57–66. Available online: http://journal.utem.edu.my/index.php/jtec/article/view/3099 (accessed on 10 July 2023).
- Bogdanov, M.; Baigildin, S.; Fabarisova, A.; Ushenin, K.; Solovyova, O. Effects of Lead Position, Cardiac Rhythm Variation and Drug-induced QT Prolongation on Performance of Machine Learning Methods for ECG Processing. In Proceedings of the 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 14–15 May 2020; pp. 40–43. [Google Scholar] [CrossRef]
- Du, W.Y. Design of an ECG Sensor Circuitry for Cardiovascular Disease Diagnosis. Int. J. Biosens. Bioelectron. 2017, 2, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Basaif, A.; Aljunid, S.; Sabri, N.; Omer, M.I.; Salim, M. Design and implementation of an embedded system to analysis an ECG signal for heart diagnosis system. J. Telecommun. Inf. Technol. 2016, 91, 289–297. [Google Scholar]
- Jemilehin, T.; Adu, M. Design and Simulation of Electrocardiogram Circuit with Automatic Analysis of ECG Signal. Analele Univ. Murgu’ 2016, 26, 1. [Google Scholar]
- Mougoufan, B.; Bertin, J.; Fouda, E.; Maurice, T.; Wolfram, K. Adaptive ECG beat classification by ordinal pattern based entropies. Commun. Nonlinear Sci. Numer. Simul. 2019, 84, 105156. [Google Scholar] [CrossRef]
- Lucani, D.; Cataldo, G.; Cruz, J.; Villegas, G.; Wong, S. A portable ECG monitoring device with Bluetooth and Holter ca-pabilities for telemedicine applications. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- Sobrinho, A.; Cunha, P.; da Silva, L.D.; Perkusich, A.; Cordeiro, T.; Rego, J. A simulation approach to certify electrocardiography devices. In Proceedings of the 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 86–90. [Google Scholar] [CrossRef]
- Serhani, M.A.; El Kassabi, H.T.; Ismail, H.; Navaz, A.N. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors 2020, 20, 1796. [Google Scholar] [CrossRef] [Green Version]
- Istepainan, R.; García, R.; Alesanco, A.; Olmos, S. A novel realtime multilead ECG compression and de-noising method based on the wavelet transform. IEEE Trans. Inform. Technol. Biomed. 2003, 30, 593–596. [Google Scholar]
- Borromeo, S.; Rodriguez-Sanchez, C.; Machado, F.; Tamames, J.A.H.; de la Prieta, R. A reconfigurable, wearable, wireless ECG system. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007. [Google Scholar]
- Nurmaini, S.; Darmawahyuni, A.; Mukti, A.N.S.; Rachmatullah, M.N.; Firdaus, F.; Tutuko, B. Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification. Electronics 2020, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Mykoliuk, I.; Jancarczyk, D.; Karpinski, M.; Kifer, V. Machine learning methods in electrocardiography classification. In Proceedings of the ACIT, Ceske Budejovice, Czech Republic, 1–3 June 2018; Volume 1–10, pp. 102–105. [Google Scholar]
- Chien, C.-N.; Hsu, H.-W.; Jang, J.-K.; Rau, C.-L.; Jaw, F.-S. Microcontroller-based wireless recorder for biomedical signals. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006. [Google Scholar]
- Company-Bosch, E.; Hartmann, E. ECG Front-End Design is Simplified with MicroConverter. Analog Devices Application Note. Analog. Dialogue 2003, 37, 1–5. [Google Scholar]
- El Hassan, E.M.; Mohammed, K. Design and Implementation of an Embedded System for Ambulatory Cardiac Monotoring. In Proceedings of the 2011 International Conference on Broadband and Wireless Computing, Communication and Applications, Barcelona, Spain, 26–28 October 2011; pp. 437–440. [Google Scholar] [CrossRef]
- Bravo-Zanoguera, M.; Cuevas-González, D.; Reyna, M.A.; García-Vázquez, J.P.; Avitia, R.L. Fabricating a Portable ECG Device Using AD823X Analog Front-End Microchips and Open-Source Development Validation. Sensors 2020, 20, 5962. [Google Scholar] [CrossRef]
- Bravo-Zanoguera, M.; Cuevas-González, D.; García-Vázquez, J.P.; Avitia, R.L.; Reyna, M.A. Portable ECG System Design Using the AD8232 Microchip and Open-Source Platform. Proceedings 2020, 42, 49. [Google Scholar] [CrossRef]
- Islam, M.; Rahaman, A.; Islam, R. Development of Smart Healthcare Monitoring System in IoT Environment. SN Comput. Sci. 2020, 1, 185. [Google Scholar] [CrossRef]
- Priya, E.; Chitra, R. Smartphone based portable ECG monitoring system. In Proceedings of the 2021 4th International Conference on Computing and Communications Technologies (ICCCT), Chennai, India, 16–17 December 2021; pp. 121–126. [Google Scholar] [CrossRef]
- Alimbayeva, Z.N.; Alimbayev, C.A.; Bayanbay, N.A.; Ozhikenov, K.A.; Bodin, O.N.; Mukazhanov, Y.B. Portable ECG Monitoring System. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2022, 13, 63–76. [Google Scholar] [CrossRef]
- Chen, Q.; Kastratovic, S.; Eid, M.; Ha, S. A Non-Contact Compact Portable ECG Monitoring System. Electronics 2021, 10, 2279. [Google Scholar] [CrossRef]
- Rodriguez, V.H.; Medrano, C.; Plaza, I. Embedded System Based on an ARM Microcontroller to Analyze Heart Rate Variability in Real Time Using Wavelets. Wirel. Commun. Mob. Comput. 2018, 2018, 9138578. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.; Bhole, K. Real time ECG on internet using Raspberry Pi. In Proceedings of the 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 15–17 February 2018; pp. 267–270. [Google Scholar] [CrossRef]
- Joukhadar, A.; Chachati, L.; Al-Mohammed, M.; Albasha, O. A portable Raspberry Pi-based system for diagnosis of heart valve diseases using automatic segmentation and artificial neural networks. Cogent Eng. 2020, 7, 1856757. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J. Research Progress of ECG Monitoring Equipment and Algorithms Based on Polymer Materials. Micromachines 2021, 12, 1282. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Eskicioglu, R. Deep Learning-based ECG Classification on Raspberry PI using a Tensorflow Lite Model based on PTB-XL Dataset. Int. J. Artif. Intell. Appl. 2022, 13, 55–66. [Google Scholar] [CrossRef]
- Karri, M.; Annavarapu, C.S.R. A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features. Expert Syst. Appl. 2023, 214. [Google Scholar] [CrossRef]
- Chen, W.K. Passive and Active Filters: Theory and Implementation; John Wiley & Sons: Hoboken, NJ, USA, 1986; Chapter 5. [Google Scholar]
- Obeidat, Y.; Alqudah, A.M. A Hybrid Lightweight 1D CNN-LSTM Architecture for Automated ECG Beat-Wise Classification. Trait. Signal 2021, 38, 1281–1291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeidat, Y.M.; Alqudah, A.M. An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring. Appl. Sci. 2023, 13, 8273. https://doi.org/10.3390/app13148273
Obeidat YM, Alqudah AM. An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring. Applied Sciences. 2023; 13(14):8273. https://doi.org/10.3390/app13148273
Chicago/Turabian StyleObeidat, Yusra M., and Ali M. Alqudah. 2023. "An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring" Applied Sciences 13, no. 14: 8273. https://doi.org/10.3390/app13148273
APA StyleObeidat, Y. M., & Alqudah, A. M. (2023). An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring. Applied Sciences, 13(14), 8273. https://doi.org/10.3390/app13148273